
August 1990

5//9_/-6/3
UILU-ENG-90-2231

CRHC-90-3

Center for Reliable and High-Performance Computing

/

w

w

ANALYSIS AND DESIGN
OF ALGORITHM-BASED
FAULT-TOLERANT SYSTEMS

V. S. Sukumaran Nair

(NASA_L,q_I_60_-_+) AB,:,at Y" I: :Nr::
ALG_TT_!M-_AACJ' F_UI_ 1-["L r K_NT

(Ill inois 0niv.) [!o.,

_,L*; I _',,N i3F

-Y T? _5
C'-:Ct

_0-2q3q2

Unc1 ds

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

REPORT

2b. DECLASSIFICATION t OOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-90-2231

NAME OFPERFORMING ORGANIZATION

Coordinated Science Lab

University of Illinois

ADORESS(O_ $_,,ndZlPCode)

ll01 W. Springfield Avenue

Urbana, IL 61801

B_. NAME OF FUNDING/SPONSORING
ORGANIZATION

NASA

8c. ADDRESS (C_, st=re, ar_ ZlPCodo)

7b.

(CRHC-90-3)

6b. OFFICE SYMBOL
(If ap_icable)

N/A

Bb. OFFICE SYMBOL
(If ar_olicat_)

11. TITLE (Include $ecuf_y Classification)

"Analysis and Design of Algorithm-Based

DOCUMENTATION PAGE

lb. RESTRICTIVE MARKINGS

None
3. OISTRIBUTION/AVAdLABIUTY OF REPORT

Approved for public release;
distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

NASA NAG 1-613

7_. NAME OF MONITORING ORGANIZATION

NASA

7b. ADDRESS (C/ly, State, end ZIPCo_)

NASA Langley Research Center, Hampton,

23665 and Arlington, VA 22217

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

VA

10. SOURCE OF FUNDING NUMBERS

I-° I-o. ELEMENT NO. NO. NO. ACCESSION NO.

Fault-Tolerant Systems"

2. PERSONAL AUTHOR(S)

13a. TYPE OF RE_ORT

Technical

16. SUPPLEMENTARY NOTATION

NAIR, V. S. SUKUMARAN

13b. TIME COVERED 14. OATE OF REPORT (Yem,.Mo_h, Oay) I$. PAGE COUNT
FROM TO 1990 August 135

17. COSATI CODES IIB. SUBJECT TERMS (Conti_ae on reverse if _ecessary and identify by block numbed

FIELD GROUP l SUB-GROUP I fault-tolerance, concurrent error detection, ABFT. Matrix-I based model, detectability, fault locatability, FTMI 5 systems

hierarchical design

9. ABSTRACT (COw,hue on reverse if neceuary and identify by block ,umber)

!
i

]

An important consideration in the design of high performance multiprocessor systems is to ensure the
correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection
and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance

(ABFT) has been suggested as a cost-effective concurrent error detection scheme.The research reported in this

thesis has been motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a

matrix-based model has been developed and, based on that, algorithms for both the design and analysis of ABFT

systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the com-

plexity further, a hierarchical approach is developed for the analysis of large systems.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

IX] UNCLASSIFIED/UNLIMITED [] SAME AS RPT.22==. NAME OF RESPONSIBLE INDIVIDUAL

--00 FORM 1473, 84MAR

12'ABSTRACT SECURITY CLASSIFICATION

I Unclassified

[]or,cus.sI"° TELEPHONE ('nClU(_ Are, COde) 122C. OFFICE SYMBOL

I I
83 APR edition may bQ used until exhaurted. SECL_RITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
U_:CLASSIFIED

ANALYSIS AND DESIGN OF

ALGORITHM-BASED FAULT-TOLERANT SYSTEMS

BY

v. s. SUKUMARAN NAm

B.Sc. Engg., University of Kcrala, 1984

M.S., University of Illinois, 1988

THESIS

Submitted in partial fulfillmentof the requirements

for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the

University of nlinois at Urbana-Champaign, 1990

Urbana, Illinois

mlw

ANALYSIS AND DESIGN OF

'ALGORITHM-BASED FAULT-TOLERANT SYSTEMS

iii

V. S. Sukumaran Nair

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1990

An important consideration in the design of high performance multiprocessor sys-

tems is to ensure the correctness of the results computed in the presence of transient and

intermittent failures. Concurrent error detection and correction have been applied to such

systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) has

been suggested as a cost-effective concurrent error detection scheme. The research

reported in this thesis has been motivated by the complexity involved in the analysis and

design of ABFT systems. To that end, a matrix-based model has been developed and,

based on that, algorithms for both the design and analysis of ABFT systems are formu-

lated. These algorithms are less complex than the existing ones. In order to reduce the

complexity further, a hierarchical approach is developed for the analysis of large sys-

terns.

iv

DEDICATION

To my Parents and Brothers

And to the memory of my Uncle K. N. Pillai

¥

ACKNOWLEDGEMENTS

I am deeply gratefulto my thesisadvisor,Professor Jacob A. Abraham, for his

patientguidance and helpfulsuggestions.His encouragement, concern, and insightin

academic as well as nonacademic matters were invaluablesources of support throughout

the course of thiswork. I would alsoliketo thank ProfessorsPrithvirajBancrjce, Rav-

ishankar K. lyer,W. Kent Fuchs, and C. L. Liu for being members of my dissertation

committee and for theirtime and support. I gratefullyacknowledge Robert Mucllcr-

Thuns and ProfessorDaniel G. Saab formany interestingdiscussionsand helpfulsugges-

tions.The friendshipof Madhav Desai, Rabindra Roy, Subhodev Das, and Abbas Butt

deserves special mention. I am also thankful to my colleagues and friends in the Center

for Reliable and High Performance Computing (CRHC) at the Coordinated Science

Laboratory. A big thank you to: Biju, Leena, James, Kunjumol, Thomas Panthaplam,

G'mon, Thomas, Abe, and Manoj Franklin for making me feel at home away from home.

Finally, I would like to thank my p_ents and brothers for their everlasting love and sup-

port which made this thesis a reality.

This research was supported by the National Aeronautics and Space Administration

(NASA) under Contract NAG 1-613 at the University of Illinois.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1
1. INTRODUCTION ..

1.1. Fault-Tolerant Multiprocessor Systems .. 1

4
1.2. Concurrent Error Detection (CED) ...

5
1.3. Previous Research ...

7
1.4. Thesis Outline ...

2. ALGORYrHM-BASED FAULT TOLERANCE ... 11

11
2.1. Introduction ...

12
2.2. General System Description ...

13
2.2.1. Faults and errors ...

2,2.2. The concept of (g, h) checks .. 15

17
2.3. Characteristics of ABFT ...

2.4. ABFT Techniques for Matrix Operations ... 18

2.4.1. Real-number codes for fault-tolerant matrix operations 20

2.4.1.1. General description of linear codes 21

22
2.4.2. Systematic codes ..

26
2.5. Conclusions ...

vii

.
A MODEL, FOR ALGORITHM-BASED FAULT TOLERANCE

3.1.

3.2.

.o..o.°°..°°..o.....

Introduction ...

Graph Representation of a System ..

3.2.1. Detection and location of faults using the graph model

3.2.1.1. Conditions on fault detection

3.2.1.2. Conditions on fault location

3.2.2. Limitations of the graph-theoretic model

3.3. An Improved Matrix-Based Model ...

3.3.1. The model matrices ..

3.3.2. Physical significance of the model matrices

3.3.3. Check invalidation ...

3.4. Conclusions ...

3.4.1. Comparison between the graph model and the matrix

model ...

27

27

29

32

33

34

35

36

36

38

39

40

40

4. ANALYTICAL APPLICATIONS OF THE MATRIX-BASED MODEL

4.1. Introduction ...

4.2. Fault Analysis of a System ...

4.3. Analysis for Fault Detectability ...

4.3.1. Algorithm to check whether R is completely detectable

4.4. Analysis for Fault Locatability ...

4.4.1. Physical significance of disagreement

43

43

44

45

46

51

54

.°.

viii

.

4.5. Complexity of the Algorithms ..

4.6. Examples for the Applications of the Model ..

4.7. An Alternative Approach to Check Invalidation

4.7.1. Secondary analysis ...

4.7.1.1. Algorithm to check whetherfis an STS

4.7.2. Analysis to determine actual locatability

4.8. Further Extensions ..

4.8.1. Description of the diagnostic algorithm

4.9. Results and Conclusions ...

DESIGN OF ABFT SYSTEMS

5.1.

5.2.

5.3.

5.4.

....,............°...°.......--.-o--o. ..--''''°'.o'.'°''.'°'.'''°.'°''''."

Introduction ...

Previous Work ..

5.2.1. A few sample bounds ...

5.2.2. Limitations ...

A New Approach for the Design of FTMP Systems

5.3.1. Problem definition ..

5.3.2. Construction of the actual system ..

5.3.3. Comparisoa with previous schemes

Conclusions ...

5.4.1. An alternative approach ...

59

60

68

69

71

74

76

77

78

80

80

81

82

83

84

84

88

92

92

93

ix

. HIERARCHICAL DESIGN AND ANALYSIS ...

6.1. Introduction ...

6.2. Independent and Orthogonal Checks ..

6.3. The Hierarchical Approach ...

6.3.1. Construction of a hierarchical system

6.3.2. The number of checks in the hierarchical system

6.3.3. Hierarchical analysis of systems ..

Conclusions ...6.4,

94

94

96

99

102

109

114

116

. CONCLUSIONS ...

7.1. Summary of Results ..

7.2. Suggestions for Future Rcscarch ..

REFERENCES ..

V1TA _____________II._I*I___*oI_-a__o_I____i-_______G___o____tt________.I_.____.________________._______._______°_I______

117

117

119

122

126

LIST OF FIGURES

w

Figure

1.1.

2.1.

3.1.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

5.1.

5.2.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

Scope of this thesis ...

Matrix multiplication on a mesh-connected processor array

Graphical representation of the system in Example 3.1 ...

Graphical representation of an example system ...

Example for error collapsing ...

Fault patterns of cardinality < t ...

The PC matrix of the hypothetical system ..

Processor arrays ..

AOSP architecture ..

Data rotation in the hypercube ..

Construction of a product system ...

Design of the final system from the product system ...

Independent checks ...

Examples for unbounded and bounded systems ...

Hierarchical expansion of a basic system ...

Hierarchical expansion of a linear array ...

Hierarchical expansion of AOSP architecture ..

Unnecessary checks in the second level of hierarchy ...

The PC matrix of a hierarchical system ..

Page

I0

20

32

47

49

56

58

63

67

68

87

91

97

101

103

109

110

112

115

CHAPTER 1.

INTRODUCTION

1.1. Fault-Tolerant Multiprocessor Systems

Multiprocessing has become a viable alternative to serial computing to meet the

high-performance requirements in various scientific, engineering, medical, military, and

basic research areas. High speed of computation, high throughput, large volumes of pro-

cessed data, and long periods of reliable operation are some of the common requirements

in most of these applications. With the help of modem VLSI technology, complex pro-

cessor chips containing up to 106 transistors have been designed and marketed to meet

the high computation requirements.

Unfortunately, performance and reliability are two contradicting requirements. As

the rate of computation increases, the probability of an error in the computed result also

increases. There are various reasons for this. First of all, the complexity of the processor

increases with its computation capability;it has been observed that the failurerate

increasesexponentiallywith the complexity of the chip [1]. Another observationin this

regard isthatas the computation and the c._mmunication load increase,the failureratein

the system alsoincreases[2]. (Note thatan increasedcomputation latehas to be supple-

mented with increasedcommunications between the processors.)

Long periods of reliable computing are necessary in areas such as medical instru-

mentation where a failure may lead to fatalities. Another scenario may be where the sys-

tem is inaccessible for repair, for instance, a space satellite, unattended after its launch, is

expected to deriver accurate data from space for a long period of time. To meet these

acute reliability requirements, the computer should be able to withstand failures.

Two methods have been suggested for handling failures in an electronic system:

fault avoidance and fault tolerance [3]. In fault avoidance, the system tries to evade

faults by design as well as by protection against fault inducing environments. However,

it is applicable only when there is an a priori knowledge of all the possible faults. Quite

often that is not the case. Furthermore, the cost involved in fault avoidance techniques is

high. Therefore, fault tolerance has been accepted as the cost effective choice.

Two approaches to achieve fault tolerance have been the static or masking redun-

dancy techniques and the dynamic redundancy techniques. In the former, failures are

tolerated by masking their effects; triplication and voting [4], duplication and comparison

[5], and quadded logic [6] are some examples. In the dynamic redundancy approach, first

the presence of a fault is detected and then a corrective action is taken in the form of

replacing the failed unit, recomputing the result, or reconfiguring the system to isolate the

faulty module from the rest of the system. Systems with dynamic redundancy are pre-

ferred to systems with static redundancy due to their greater mean lifetime gains, greater

isolation against catastrophic faults, ability to survive until all spares are exhausted, and

their potential to utilize the lower failure rate of the redundant (usually unpowered) unit.

However, the fault tolerance capabilities of the system are highly dependent on the qual-

ity of the fault detection and recovery schemes.

Various recovery schemes, especially re,configuration schemes, have been studied

extensively in the past [7, 8, 9, I0]. The area of fault detection seems to be less attended.

One observes that fault detection is a more difficult problem than the reconfiguration

problem. With the potential of micro¢lectronic teclmology to provide more redundant

processing nodes along with sophisticated switching networks interconnecting them,

reconfiguration and replacement have become less complex issues. In contrast, detection

of a fault in the system has become all the more complicated due to the complex interac-

tion between the component processors. In order to harness fully the fault tolerance

potentials of modem VLSI architecture, one must have efficient and high quality fault

detection schemes. The main theme of discussion in this thesis is the detection of faults

in multiprocessor systems.

A fault can be detected either by off-line checking or by concurrent checking. In

the first method, the system is brought off-line and checked for the presence of faults.

Even though this approach has the advantage that it does not affect the real-time perfor-

mance of the system, its application is limited since it can detect only permanent faults.

Unfortunately, studies show that [11] more than 85% of major system failures are tran-

sient in nature. Furthermore, a strong relationship has been observed between the

occurrence of transients and the level of system activity. Therefore, it becomes impera-

tive to check for faults in a system while it is in operation. The current trend is to include

Concurrent Error Detection (CED) capability in the design of digital systems.

1.2. Concurrent Error Detection(CED)

Traditionally, systems with CED are implemented using self-checking circuits [12]

or by hardware duplicationand comparison of theirresults[5].Self-checkingcircuitsare

specially designed to operate on data elements encoded using error-detecting codes.

Duplication of circuitscan be considered as a specialtype of self-checkingcircuitsthat

employ the duplication code. Since these traditional techniques require 200 to 300%

hardware _edundancy, they are usually very expensive. This puts the pressure on the sys-

tem designer to come up with cost effective schemes.

The quality of CED techniques depends heavily upon the level at which checking is

implemented: the gate, functional or system level Gate level techniques such as those

using error detecting/correcting codes usually assume the conventional stuck-at fault

model. Studies show, however, that there are faults which cannot be covered by the

stuck-at fault model [13]. Further, due to the shrinking device dimensions, a physical

defect affecting a small local area of a chip can result in faults in several gates. This

points to the need for a higher-level fault model instead of the stuck-at fault model.

Algorithm-based faulttolerance(ABFT), proposed by Huang and Abraham [14],is

a faulttolerancescheme thatuses CED techniques at a functionallevel. System level

applicationsof ABFT techniques have also been investigated[15]. These techniques

assume a general faultmodel which allows any singlemodule in the system to be faulty

[14]. Even though the faultsare modeled at a high level,they cover allthe lower-level

stuck-atfaults,alsothe techniquesare independent of the logicdesign and the type of the

IC used.

5

ABFF is widely applicable and it has proved its cost-effectiveness especially when

applied to array processors [16]. A detailed description of ABFT techniques may be

found in Chapter 2. The objective of this thesis is to develop efficient analysis and

design algorithms for ABFT systems.

1.3. Previous Research

The problem of locating faulty processors within a multiple processor system by

temporarily halting normal operation and placing the system in a diagnostic mode has

originally been studied using the PMC model [17] which assumed that the processors can

individually test other processors. A test may be any sort of check by one processor on

the operation of some other, including applying test vectors and checking the resulting

outputs. On the basis of the test responses, the test outcome is classified as "pass" or

"fail." The test evaluation is always accurate ff the testing unit is fault-free.

The PMC model is limited to systems in which each unit alone can test some other

units; also, different failure rates for the units in the system are not characterized. Russel

and Kime generalized this model by broadly interpreting the concepts of faults and test

[18, 19]. In this model, a complete testing of a unit requires combined operation of more

than one unit. An algebraic approach to digital system fault diagnosis was suggested by

Adham and Friedman [20]. Here, a set of fault patterns is described by a Boolean

expression. To be applied to large systems, this approach requires tools for efficiently

manipulating Boolean expressions containing large number of variables. Another gen-

eralization of the PMC model has been suggested by Maheswari and Hakimi [21]. Their

model incorporatesthe probabilistic nature of fault occurrence. This model was further

extended by Fujiwara and Kinoshita [22].

The analysis of ABFT systems is much harder than the analysis of systems con-

sidered in the above mentioned studies. In the PMC model and in its generalizations,

researchers assume that complete tests arc available for individual processors [18, 19].

That is, if the tested unit is faulty and the tester is fault-free, then the test is guaranteed to

fail. However, in systems using ABFT, a particular fault pattern can produce a number

of different error patterns. The checking operations detect the errors directly and the

faults indirectly. Since the error detectability of the checks is finite, even ff the check

evaluating processor is fault-free, a fault in the checked unit may be undetected if the

number of errors caused by that fault is larger than the error detectability of the check.

(We denote these kinds of checks as incomplete checks.) Therefore, fault analysis in

such systems is much more complex than conventional fault analysis. It may be

observed that the systems using incomplete checks arc supersets of systems using com-

plete checks. This is because a complete check can be viewed as an incomplete check

with infinite error detectability.

The first attempt towards modeling ABFT systems was made by Bancrje, and Abra-

ham [23] who proposed a graph-theoretic model. In this model, the system is represented

by a tripartite graph having three groups of nodes: nodes of type F corresponding to the

possible faulty processors, nodes of type E corresponding to the output data elements on

which the errors may occur, and nodes of type C corresponding to the checks. Them is an

edge from an F node i to an E node j if data element dj is affected by processor Pi. There

is an edge from node j of type E to node k of type C if the data element dj is checked by

7

checkc,. For the analysis of faults in the system, a generalized error table (GET array) is

constructed from the graph model [23]. The GET array contains all possible error com-

binations of the faults under consideration. The detectability or locatability of a fault is

determined by observing whether all the error patterns produced by that fault are detected

or locatedby the checks provided.

Even though thismodel can be used for the accurate analysisof systems using

ABFT, ithas some limitations.The complexity of the analyticalalgorithms based on this

model isexponential in the number of data elements in the system. This leads to enor-

mous memory and time requirements. Inefficienthandling of invalidationof checks, per-

formed by faultyprocessors,is another drawback of the model. However, the model

gives a theoreticalframework forrepresentingfault-tolerantsystems.

1.4. Thesis Outline

This thesis is organized in the following way. A detailed description of ABFT sys-

tems is given in Chapter 2. A general description of the multiprocessor systems which

are candidate architectures for the application of ABFT is prodded. The concept of (g,

h) checks is discussed and examples are given. We consider fault-tolerant matrix multi-

plication in detail and derive a general set of real-number codes for fault-tolerant matrix

operations on processor arrays.

In Chapter 2, first we briefly describe the graph-theoretic model. Then we present

the new matrix-based model. In this model, the relationship between processors, data,

and the checking operations are represented in terms of three matrices, the PD matrix, the

DC matrix, and the PC matrix. The physical significance of the model matrices is

explained with examples. The problem of invalidating the checks performed by faulty

processors is transformed into a problem of error detection at the output of the faulty pro-

cessor. This eventually simplifies the complexity of the analysis algorithms.

Based on this model, algorithms are developed for determining the fault detectabil-

ity and locatability of ABFT systems. Unlike the algorithms based on the graph model,

these algorithms do not need exhaustive enumeration of errors in order to analyze the

system completely; instead, we propose an error collapsing technique which reduces the

complexity of the analytical algorithms from exponential to linear in the number of data

elements, and polynomial in the number of processors. Application of these algorithms

for the analysis of ABFT systems is illustrated with some realistic examples. Finally we

propose an alternative method for the invalidation of checks performed by faulty proces-

sors.

Chapter 4 deals with the design of ABFT systems. We propose a straightforward

methodology for designing such systems. The advantage of this technique is that it can

handle error detectability and locatability simultaneously. Also, when the processors in

the system are producing large volumes of data, the new technique results in a smaller

number of checks when compared to those for the existing algorithms.

Even though the complexities of the analysis algorithms are less than the complexi-

ties of the previous algorithms [23], the computation may require a large amount of time

and memory when the system has a large number of processors producing huge volumes

of data. In contrast, a hierarchical approach will reduce the complexity of the algorithms

to a polynomial in the logarithm of the processors in the system. In Chapter 6 we illus-

9

tratc a particular hierarchical approach to build large fault-tolerant multiprocessor sys-

tems. Based on this approach a hierarchical analysis procedure is outlined.

In Chapter 7 we give a summary of the results in the thesis. Finally, some pointers

are given towards future research in the related area. In order to make it easy for the

reader to place the thesis in the vast area of reliable computing, a relational tree diagram

is shown in Figure 1.1. The area enclosed in the dotted rectangle represents the area

covered in this thesis. Even though the figure suggests that the analysis and design tech-

niques developed in this thesis are pertinent to ABFT systems, it should be noted that

these techniques are applicable to other types of fault-tolerant systems as well.

10

Reliable Computing

Fault Avoidance Fault Tolerance

Dynamic Redundancy

Detection Recovery

Off-line Concurrent

System Level Functional Level Gate Level

Complete Checks Incomplete Checks

!

, ABFT

StaticRedundancy

Matrix ModelGraph Model

Analysis Design Hierarchical

Approach

Figure 1.1. Scope of this thesis.

11

CHAPTER 2.

ALGORITHM-BASED FAULT TOLERANCE

2.1. Introduction

As discussed in the preceding chapter, fault detection and diagnosis are integral

parts of any fault tolerance scheme. There are two ways to detect faults: (1) by off-line

checking and (2) by concurrent checking. In an off-line checking scheme, the computer

(processor) is checked for its correctness while it is not performing any useful computa-

tion. This approach has the advantage that the performance of the computer will be unaf-

fected by the checking operation; however, this kind of checking can detect ordy per-

manent faults. Transient faults, which constitute 75-80% of faults in a computer system

[11], will not be detected by off-line checks. In order to detect transient faults, con-

current error detection schemes such as duplication and comparison have been suggested.

These schemes suffer from 200-300% hardware or time redundancy. In many applica-

tion areas this amount of overhead is unaffordable. This motivated researchers to

develop new schemes that require less overhead.

A concurrent error detection scheme called algorithm-based fault tolerance (ABFT)

has been suggested by Huang and Abraham for attaining the above objectives [14]. In

ABFT the input data elements are encoded in the form of error detecting or correcting

codes. The original non-fault-tolerant algorithm is modified to operate on encoded data

12

and produce encoded outputs, from which useful information can be recovered easily.

The modified algorithm will take more time to operate on the encoded data when com-

pared to the original algorithm, and this time overhead must not be excessive. The task

distribution among the processing elements is done in such a way that any malfunction in

a processing element will affect only a small portion of the data, which can be detected

and corrected using the properties of the encoding.

It has been observed that ABFT techniques are very cost effective when applied to

processor arrays. In this chapter we give a general description of systems which axe

good candidates for the application of ABFT. The concept of algorithm based fault toler-

ance will be illustrated with some application examples.

2.2. General System Description

In this section, we describe the general features of multiprocessor systems which are

candidate architectures for the application of ABFT techniques. It may be noted, how-

ever, that the application of ABFT techniques is not limited to multiprocessor systems;

they are also applicable to algorithms running on uniprocessors, probably with less

efficiency.

An algorithm executing on a multiple processor system is specified as a sequence of

operations performed on a set of processors in some discrete time steps. Each processor

has a local memory on which it ,_an perform reads and writes. It can also communicate

with other processors in the system through buffers at various input and output ports. A

processor cannot read or write from any other processor's local memory even in the pres-

ence of a fault. This is not an unrealistic assumption since most of the existing fault-

13

tolerant multiproccssor systems are of the message passing type rather than the shared

memory type. This is because in a shared memory architecture, error confinement is

difficult, often, impossible. However, the concept of distributed shared virtual memory

has been developed to support shared memory programming models in loosely coupled

distributed multiprocessor systems [24]. These architectures have the advantages of a

distributed memory parallel machine in a hardware point of view, whereas, in a software

point of view they have the additional advantages such as ease in process migration, ease

in passing complex data structures among processors and ease in object synchronization

in object-oriented systems. Error recovery in such systems is described in [25]. In this

thesis we deal exclusively with machines using message passing paradigm for communi-

cation among the processors.

2.2.1. Faults and errors

A fault is any condition that causes a malfunction in a single processor while per-

forming operations. Some of the major causes which result in faults are: (1) manufactur-

ing defects such as photolithography errors, deficiencies in process quality and improper

designs; (2) wear out in the field due to electromigration, hot electron injection etc.; (3)

environmental effects such as alpha particles and cosmic radiations [26, 27]. The man-

ifestations of these faults are called errors [28].

An e,",or is any discrepancy between the expected result of an operation and the

actual result of the operation. Since a processor performs different types of operations, a

fault in the processor may result in errors in any of those operations. For example, if the

processor is performing some data computation, a fault in the processor may produce a

14
9

wrong value of the data. If the processor is u'ying to read an address location, a fault may

cause wrong address selection (addressing fault). However, certain types of faults may

not produce any error at all

Algorithm-based fault tolerance schemes arc based on functional fault models that

allow any singlemodule in the system to be faulty[14]. Even though the faultsand

errors are treated at a high level,the model covers all the stuck-at faultsand the

corresponding errors in the lower gate and circuitlevels. In addition,the model is

independent of the type of design or technology used in the IC. In summary, wc assume

Byzantine type of faults[29].

In order to detectthe presence of a faultin a processor,we resortto a technique

calleddata valuechec_ng [30]. Here, a faultisdetected by detectingerrorsin the final

data value generated by the processor.One observes that the problem of detection of

various faultssuch as addressing faultscan be translatedto the problem of detecting

errorsin the computed results[31]. Therefore, all the faultsare treateduniformly as

those corruptingthe final,computed result.

On the otherhand, ffa particularfaultdoes not necessarilyproduce any errorsin the

finaldata value computed by thatprocessor,we may disregardthe presence of thatfault.

The computed resultof a processormay be checked by one or more other processors in

the system. Processors which check the output of one or more processors arc caUcd

check,evaluatingprocessors or,in short,chec/c,processors.The evaluationof a faultin a

check processor can also be translatedto the problem of errordetectionat the output of

thatprocessoras we show inChapters 3 and 4.

15

We assume that any processor in the system is capable of performing useful compu-

tations, check evaluation, or both. A check on the data element is any combination of

hardware and software procedures performed on the data by processors which use the

encoding of the data to generate a "pass" or "fail" output.

Let q be the total number of checks that are applied on the data to perform the sys-

tem level checking and C = {cl,c2 cq} denote the set of checks. Let n be the total

number of data and pseudo-data elements and _.--- {e 1,e2 e, } be the set of errors in the

data and pseudo-data elements. The set E represents the sets of error patterns = {E _,

E 2 E z' }, consisting of all subsets of 7,. Let N be the number of processors in the sys-

tem which includes both the processors performing useful computations as well as the

processors performing the evaluation of the checks. Faults in the processors can be

denoted by the setv -- {fl,fz,...,fN}, wbere_ denotes a fault in processorpi. The set F =

{F 1, F 2 F 2N} consists of all subsets of v, and each fault pattern, F _' e F, is permissible

in the system. Fault patterns consisting of t or fewer faults are called t-faults.

DEFINITION 2.1. DATA (Pi) is the set of data elements affected by processor Pi. []

DEFINITION 2.2. CHECK(all) is the set of checks that evaluates the correctness of

the data element di. []

2.2-2. The concept of (g, h) checks

Formally, a (g, h) cheek is one which is defined on g data elements, dl, d2 and

dg, and evaluated by a check-evaluating processor such that

(1) the check passes (outputs 0) if

(1.1) the check-evaluating processor is not faulty, and none of the data elements

16

is in error;,

(2) the check fails (outputs 1) if

(2.1) at least one data element is erroneous and the number of erroneous elements

among the g data elements does not exceed h and the check-evaluating processor

is not faulty;

(3) the check is invalid (may output 0 or 1) if either

(3.1) more than h data elements are erroneous, or

(3.2) the check evaluating processor is faulty.

The variable h is referred to as the error detectability of the check.

Note that these checks are different from the complete checks defined in [17, 19]. In

those works, the authors assume that whenever a checked unit is faulty and at least one of

the checked units is fault-f'r_, the fault in the checked unit will always be detected. The

(g, h) checks are incomplete in this sense. In other words, even when all the checking

units arc fault-free and the checked unit is faulty, the fault may go undetected. Condition

3.1 covers this possible incompleteness of (g, h) checks in the sense that even if the

check evaluating processor is fault-free, it may not detect a fault in another processor if

the number of erroneous data elements, checked by that processor, exceeds h. We illus-

u-ate another important property of (g, h) checks in the following example.

EXAMPLE 2.1. Consider a check C which checks the equality of n data elements

when they are all correct. Since the checking operation is done on n data elements, g -- n.

Any error on up to n-1 number of data elements will be detected by the check. However,

if the error occurs on all the n data elements in such a way that the resulting numbers am

17

still the same, the check will not detect that error. Therefore, the error detectability h of

the check is n-1. It may be noted that, even though the check can detect a multiple

number of faults, it cannot locate an error. In general, this is an important distinction

between (g, h) checks and error detecting/correcting codes such as Hamming codes

where the error detectability of t implies an error correctability (locatability)of [-2J [12].

O

Having described the general features of a system supporting algorithm-based fault

tolerance, we will present the salient features of ABFT techniques and illustrate them

with some application examples.

2.3. Characteristics of ABFr

This technique is distinguished by three characteristics:

(1) Encoding the input data stream.

(2) Redesign of the algorithm to operate on the coded data.

(3) Distribution of the additional computational steps among the various computational

units in order to exploit maximum parallelism.

The input data are encoded in the form of error detecting or correcting codes. The

modified algorithm operates on the encoded data and produces encoded data output, fi:om

which useful information can be recovered very easily. Obviously, the modified algo-

rithm will take more time to operate on the encoded data when compared to the original

algorithm; this time overhead must not be excessive. The task distribution among the

processing elements should be clone in such a way that any malfunction in a processing

18

element willaffectonly a small portionof the data,which can be detected and corrected

using the propertiesof the encoding.

Signal processing has been the major applicationarea of ABFT untilnow, even

though the technique is applicablein other types of computations as well. Since the

major computational requirements for many important real-timesignalprocessing tasks

can be formulated using a common set of matrix computations, itis important to have

faulttolerancetechniques for various matrix operations[32]. Coding techniques based

on ABFT have alreadybeen proposed forvariouscomputations such as man-ix operations

[14,33], FFT [34], QR factorization,and singular value decomposition [35]. Real-

number codes such as the Checksum [14]and Weighted Checksum codes [16] have been

proposed for fault-tolerant matrix operations such as matrix transposition, addition, mul-

tiplication and matrix-vector multiplication. Application of these techniques in processor

arrays and multiprocessor systems has been investigated by various researchers

[36, 15, 37]. In order to illustram the application of ABFT techniques, we discuss fault-

tolerant matrix operations in d_taiL We present some previous results in the area and

then present some new results related to encoding schemes for fault-tolerant matrix

operations.

2.4. ABFT Techniques for Matrix Operations

As mentioned in the preceding chapter,variousmethods such as checksum encod-

ing,weighted checksum encoding and average checksum codes have bccn proposed for

fault-tolerant matrix operations. These encoding schemes are especially suitable for

computations in processor arrays [38].

19

EXAMPLE 2.2. Consider multiplying two 2x2 matrices A and B.

We append an additional row (checksum row) to matrix A and an additional column

(checksum column) to matrix B. Now the product of these appended matrices will have

an additional row and an additional column that satisfy the checksum property.

x 2 = 0 •
2

The implementation of this multiplication on a mesh-connected processor array is

shown in Figure 2.1. Here the encoded A matrix is broadcasted among the processors in

a horizontal direction and the encoded B matrix is broadcasted vertically as shown in the

figure. The resultant matrix entries are shown within the rectangles, representing the pro-

cessors. It has been shown that this kind of computational setup can detect three simul-

taneous faults or locate a single fault in the array. N

The use of the checksum codes is limited due to the inflexibility of the encoding

schemes and also due to potential numerical problems. Numerical errors may also be

misconstrued as errors due to physical faults in the system. A generalization of the exist-

ing schemes has been suggested as a solution to these shortcomings [39]. In order to

complement those results, we prove that for every linear code defined over a finite field,

there exists a corresponding linear real-number code with similar error detecting and

correcting capabilities.

2O

2, 1 "

-1,0

1,1

Figure 2.1.

1 0 1

3 2 5

I

Matrix multiplication on a mesh-connected processor array.

2.4.1. Real-number codes for fault-tolerant matrix operations

Real-number codes are codes defined over the field of real numbers. This is a high

level encoding scheme. In tiffs section, we develop a general set of real-number codes

for fault-tolerant matrix operations. We use the general definition of encoded matrices as

given in [38].

DEFINrrloN 2.3. An encoder vector is a vector whose

column/row vector will produce a columrt/row check element.

inner product with a

[]

DEFINITION 2.4. An encoder vector is said to be a Valid Encoder Vector (VEt/) if it

produces check elements whose properties will be preserved during matrix multiplica-

tion, addition, transposition and LU-decomposition.

21

It has been proved that linearity is a necessary and sufficient condition for an encod-

ing vector to be a VEV. Therefore, in the following discussion we consider only linear

encoding schemes.

2.4.1.1. General description of linear codes

A data sequence {xi } over any finite field can be divided into blocks of k symbols

which are processed independently.

of length k

A typical block may be represented as a row vector

x = Ix t, x2 xk]

and the corresponding code vector is given as

y - [Yl, y2 Y,_]-

Here x and y are related by

y ffix G

where G is an k×n matrix called the generator matrix [40, 41]. Thus the row space of G is

the linear code Y, and a vector is a code if and only if it is a linear combination of the

rows of G. Such a code is called an (n, k) code. Error detection is accomplished with the

help of the parity check matrix H which satisfies the condition

GHr=0

The number of errors which can be detected and corrected by a code can be

described in terms of the Hamming weight [12,41,40] of the code. A code of Hamming

weightd+l candetect atmostderrors andcorrect at most [_ errors [12,42]. Error

detectability may also be expressed in terms of the linear independence of columns of the

matrix H r. A code is t error detectable if and only if any set of < t number of columns of

22

H T arc linearly independent [41]. In order to derive a correspondence between finite-

field codes and real-number codes, we make use of the second definition of error detecta-

bility.

2.4.2. Systematic codes

Systematic codes are a special class of linear (n, k) codes. Here, (n-k) check ele-

ments are appended to k actual data elements. If the actual data word is

x = Ix1, x2 x_]

the corresponding code word is

y _[xl, x2 xk,el, c2..... c,,_]

The generator matrix G of the systematic codes is of the form

G=[I_ I P], (I)

where Ik is a k-dimensional unit matrix and P is a (k x n-k) matrix. A matrix H of the

form [_pr I I._] willform a paritycheck matrix.

In most of the high speed processing techniques, systematic encoding is preferred

because once the received (or computed) result is found to be error free, retrieval of the

actual information from the code vector is straightforward. Checksum and weighted

checksum encodings are examples of systematic encoding. However, it has been proved

that any Linear encoding is equivalent to a systematic encoding scheme, in the sense that

any lineargeneratormatrix can be.transformed intoanother combinatorially equivalent

generatormatrix [41] of the form given inEquation (I).Therefore,in the following dis-

cussion we will not make any distinctionbetween a Linearcode and a systematic linear

code.

23

LEMMA 2.1. Vectors which are linearly independent over a finite field are also

linearly independent over the field of real numbers.

PROOF: Let us consider a finite field GF(q) where the additions and multiplications

are done (modulo q). Suppose vt, v2 vk am linearly independent over the field

GF(q). Let A be the matrix whose columns/rows are the vectors vt, v2 vk. By

definition of linear independence [43], there exists an kxk submatrix D of A such that

IDI (mad q) _0,

where ID I is the determinant of the submatrix D. For determining the linear dependence

or independence of these vectors over the field of real numbers, we take the linear combi-

nation of the rows of A, where the rows are multiplied by real numbers rather than by ele-

ments from GF(q). If ri is the real number multiplicand of vector vi, in the place of ID I,

i,.,/

we will have fl"Irl) I DI, which is not equal to zero, since IDI (rood q)# 0. Therefore,
i-I

the vectors v t through vk are linearly independent over the field of real numbers. []

LEMMA 2.2. If vectors v l, v2 vk are linearly dependent over a finite field

GF(q), they are not necessarily linearly dependent over the field of real numbers.

PROOF: Ifvt, v2 vk are linearly dependent, it implies that any submatrix D of

A is such that

ID I (rood q) =0,

i../

which does not imply that (l"Iri) IDI = 0; therefore, the vectors need not be linearly
i-I

dependent over the field of real numbers. []

24

THEOREM 2.1. For any t--error detecting code defined over a finite field, there exists

a corresponding code over the field of real numbers, with the same generator matrix and

the same parity check matrix, whose error detectability is > t.

PROOF: Let C! be a t-error detecting code defined over a finite field- with generator

matrix G! and parity check matrix Hr. From the previous discussion, we know that every

set of t, or smaller number, of columns of H_ will be linearly independent over the finite

field. Then, by Lemma 2.1, these columns are also linearly independent over the field of

real numbers, which implies that for a code C, over the field of real numbers having gen-

erator matrix G, = Gf and parity check matrix H, = Hf, the error detectability will be at

least equal to t. By Lemma 2.2, it may be possible that a larger number of columns of H_r

are linearly independent which effectively increases the error detecting capability of the

code. Thus, the error detectability of C, is greater than or equal to t. []

The set of single-error correcting linear real-number codes presented in [44] is one

special case of the general sets of codes established by Theorem 2.1.

EXAMPLE 2.3. Consider the finite field GF(7) employing symbols

{-3, -2, -1, 0, 1, 2, 3}. A matrix with all distinct columns of length two will define the

parity matrix H of a Hamming code over the finite field GF(7). Let

H= -2-11230 "

This will also define a real-number code by regarding H as being over the real numbers.

25

Theco_spon_g_ne_tormatrixis

"100000-13"

010000-12

001000-11

G= 000100-1-1

000010-13

000001-1-3

This real-number code can detect at least two errors or correct one error. []

EXAMPLE 2.4. Let us consider simple parity encoding over the field of binary

numbers. It is known that parity codes are single error detecting [40], (that is, the Ham-

ruing distance is two) with a generator matrix

where P =[1.1 l] T. It can be observed that the corresponding code (as in

Theorem 2.1) over the field of real numbers is the simple row checksum code. []

The one to one correspondence between finite-field codes and real-number codes is

a powerful result from an implementation point of view: (1) since most of the existing

codes are proposed for finite fields, adapting those codes for real-number computations

will be easier than inventing new codes for real-numbers; (2) the real number codes lend

themselves to implementation in digital signal processors employing standard arithmetic

units; (3) furthermore, they can be conveniently implemented in software which does not

efficiently admit the bit by bit representation and manipulation required by finite field

codes.

The application of these general sets of codes greatly improves the numerical per-

formance of the fault tolerance scheme [32]. Details may be found in [38].

26

2.5. Conclusions

We discussedthe salient features of ABFT techniques. A detailed description of

systems supporting ABFT was presented with examples. The concept of (g,h) checks

was elaborated and the distinctions between these checks and the Hamming codes were

highlighte_ Finally, we considered fault-tolerant matrix operations using ABFT on a

processor array. In the process of developing a general set of codes for fault-tolerant

matrix operations, we proved a fundamental theorem relating the error detectability of

finite field codes and the error detectability of the corresponding real-number codes.

27

CHAPTER 3.

A MODEL FOR ALGORITHM-BASED FAULT TOLERANCE

3.1. Introduction

As discussed in the previous chapter, ABFT techniques arc being more and more

widely applied. Due to the critical nature of most of the application areas, it isnecessary

to know the fault tolerance capabilities of the computer system before it is put to the

application. This requires an analytical procedure, which in turn requires a good model

to represent the system in general.

The analysis of ABFT systems is difficult when compared to the analysis of conven-

tional fault-tolerant systems such as TMR and "ITR. In conventional designs of fault-

tolerant systems, designers assume that complete tests am available for individual proces-

sors [18, 19]. That is, if the tested unit is fattlty and the tester is fault-free, then the test is

guaranteed to fail However, in ABFT systems, errors in computed results are detected

directly and the faults are detected indirectly. Most of the time there does not exist a

one-to-one correspondence between errors and faults. One fault may produce multiple

errors. If a processor is computing more than one data element, a fault in that processor

may or may not produce an error in one or more of those data elements. For instance, a

processor computing 3 data elements may generate 8 different error patterns (including

the case where it does not cause any error in any three of the computed results) when it

28

becomes faulty. In order to detect a fault in a processor, the checking operations done on

the processor must be ableto detectallthe possibleerrorcombinations. The errordetec-

tabilityof the checks in the system islimitedand hence the checks can detectan error

only ifthe sizeof the errorpatterndoes not exceed the errordetectabilityof the checks.

Therefore, situationsmay arisesuch thatthereare faultfreeprocessorschecking a faulty

processor,and stillthe faultisnot being detected.This incomplete natureof the checks

adds tothe complexity of the analysisof ABFT systems.

The first attempt towards m'odeling ABFT systems was made by Banerjee and Abra-

ham [23] who proposed a graph-theoretic model. In this model, the system is represented

as a tripartite graph having three groups of nodes: nodes of type F corresponding to the

possible faulty processors, nodes of type E corresponding to the output data elements on

which the errors may occur, and nodes of type C corresponding to the checks. Even

though the model is especially suitable for the analysis of faults in systems using ABFT,

the analysis of conventional redundancy techniques such as duplication, triplication, or

NMR can easilybe done using thismodel The limitationof the model isthatthe com-

plexityof the analyticalalgorithms based on thismodel isexponentialin the number of

data elements in the system. This leads to enormous memory and time requirements for

the analysisof complex systems with a largenumber of processors,with each processor

producing large volumes of data. However, the model forms a theoreticalframework for

representingfault-tolerantsystems.

In order to assuage the complexity of the analysisalgorithms,we propose a matrix-

based model. In thismodel, we definethree matrices,the PD (Processor-Data)matrix,

the DC (Data-Check) matrix and the PC (Processor-Check) matrix, which describe the

29

system as a whole. The PD matrix represents the relationship between the processors and

the data elements computed by them. The DC matrix contains the information regarding

which check is checking which data element. The PC matrix is the product of the PD

and the DC matrices.

If a check processor becomes faulty, the checking operations performed by that pro-

cessor should be invalidated. To that end we introduce pseudo-data dements associated

with every check processor. A fault in the checlcprocessor wiU always produce an error in

the pseudo-data element since an infinite weight is assigned to that data element. Thus,

check invalidation is translated to a problem of error detection at the output of a faulty

processor.

In this chapter we first give a brief description of the graph model. For completeness

of the thesis, we discuss various fault detection and location constraints based on the

model The motivation for developing a new model is given by higldighting some of the

limitations of the graph model Then the matrix model is developed and the significance

of the model matrices is explained. The modeling of ABFT systems using both the

models is illustrated with examples. F'matly, in the conclusion, we provide a critical

comparison between the models.

3.2. Graph Representation of a System

In this model, the system is represented as an undirected graph with four sets of

nodes and edges between them. The first set of nodes (called processor nodes) represent

the processors performing useful computations. The results of the useful computations of

the algorithm form the second set of nodes (called data nodes). The set of checks form

30

the third set of nodes (called check nodes). The checks arc performed on a set of check-

ing processors, which form the fourth set of nodes (called evaluator nodes).

Edges between processor and data nodes represent dependencies of the result data

elements on the processors. There is an edge from a processor node p_ to a data node dj if

dj E DATA(pi). Edges between data and check nodes represent the definitions of the

checks on the data elements. If check ck operates on data clement di, then there is an

edge between data node di and check node c_. Edges between check and evaluator nodes

model the check evaluation process. If an cvaluator pj participates in the evaluation of a

check ck, there is an edge between the evaluator'nod¢ pj and check node c,.

A fifth set of nodes, the "pseudo-data" nodes, is introduced to facilitate a uniform

network to treat faults in processors performing useftfl computations and faults in proces-

sors performing check evaluations. Every check has associated with it a number of pro-

cessors involved in the evaluation of the check. For every chcck-evaluator pair, (check

c,, processor Pi), there is a pseudo-data node. Since them is a one-to-one corrcspondcnce

between an evaluating processor and a pseudo-data node for a given check, a fault in a

processor evaluating a check means the same as an error in the corresponding pseudo-

data element.

The notion of invalidation of checks has been extended as errors in the pseudo-data

elements. In the ordered set of errors, whenever them is"an error in a pseudo-data ele-

ment, the corresponding checking operation is considered to be invalid. The crrors in

pseudo-data elements and actual data elements arc treated identically so that faults in

processors performing useful computations and faults in check-evaluating processors can

be considered without any distinction. With these observations, the system graph can bc

31

simplified by merging the data and pseudo-data nodes and the processor and evaluator

nodes. The resulting graph has three sets of nodes: processor nodes, data nodes and

check nodes.

EXAMPLE 3.1. Consider a hypothetical system having 4 processors P I through P4.

Processors P t and P3 produce useful data elements whereas processors P3, and P4 per-

forms check evaluations. The relationships among the processors, data, and checking

operations arc as given in the following.

DATA(P1)= {dl, d2, d3}

DATA(P2) = {d2, d4}

DATA(P3) = {d5 }

DATA (P4) = {d6, d7 }

CHECK(dO =

CHECK(d2) - {C2 }

CHECK (d3) = {C 1}

CHECK(d4) = {C2, C3 }

CHECK(ds) = {C 1 }

CHECK(d6) = {C2 }.

CHECK(d7) = {C3 }.

It may be noted that data elements ds, d6, and d7 arc pseudo-data elements corresponding

to checks Cl, C2, and C3, respectively. Figure 3.1 shows a graphical representation of

the system.
[]

The model can be easily extended for systems having fault-secure checking units.

In such a case, a check is invalid if and only if the corresponding pseudo-data element is

32

dl

P1 C1

P2 C2

P3

C3

P4

Figure 3.1. Graphical representation of the system in Example 3.1.

erroneous and at least one of the useful data elements evaluated by the check is errone-

ous. If none of the useful data elements evaluated by the check are erroneous, the check

is not invalidated and it will detect an error in the pseudo-data element and hence the

fault in the checking processor can be detected.

3.2.1. Detection and location of faults using the graph model

In this section, we describe the fault detection and location constraints derived in

[23] using the graph model. To that end, we explain some terminologies used in that

study.

The set of checks that may fail for an error pattern E i is denoted by FAIL(Ei).

When E _ consists of a single data element, dj, the set of checks in FAIL(E i) is guaranteed

to fail. When E _ contains more than one element, the condition on the set of checks in

33

FAIL(E i) is that they "may fail" instead of being "guaranteed to fail." This is because it

is quite possible that a check that is guaranteed to fail for an error in a single data ele-

ment might become invalidated in the presence of other errors. However, if a check is

not a member of FAIL(Ei), it is guaranteed to pass. The set of checks that are invalidated

by the presence of the error pattern E i is denoted by INVALID (El). Then a generalized

error table, GET, which is a 2_ x q array can be defined [23] such that GETj.k = O, 1, or X,

(where X denotes an invalid entry) if for error pattern E j present, check ck is known to

always pass, always fail, or have an unknown result.

In the following, we define two terms masking and exposing of faults in the context of

error patterns produced by those faults. These terms are frequently used in upcoming

discussions.

DEHNI_ON 3.1. A fault pattern FJ is said to be masked by a fault pattern F j' if and

only if there exist error patterns, E'_ ERROR(F j) and E'a ERROR (Fk), such that

FAIL (E m) _ INVALID (E"). []

DEFINrrION 3.2. A fault in F i is exposed if it is not masked by F j. Suppose fb _ Fj

such that it is exposed in F j. This implies that for all error patterns E "__ ERROR (fb) and

E n _ ERROR(FJ),FAIL(E m) q_INVALID(E'). []

3.2.1.1. Conditions on fault detection

An algorithm has t-fault-detectability iff some check in C will definitely fail pro-

vided the number of faults present in the system, on which the algorithm is executed,

34

doesnot exceed t. It was implicitly assumed that no check will fail if the system is fault-

free. With these formulations, conditions are derived for t-fault-detectability [45].

THEOREM 3.1. An algorithm a executing on a computing system S has t-fault-

detectability ff and only if, for every non-zero F i e F(t), it is implied that for all E j E

ERROR (Fi), GET_ ffi 1 for some c_ E C.

PROOF: The proof of this theorem is given in [23].

This necessary and sufficient condition for fault detection is difficult to evaluate in

practice. Instead, the concept of closure of a fault has been introduced [23], which is very

similar to the closure of faults defined in [18]. Despite this concept, the algorithm for

fault detection is based on the exhaustive enumeration of all error combinations and

hence is exponential. However, it forms a basis for a condition for fault detection.

3.2.1.2. Conditions on fault location

An algorithm is said to have t-fault-locatabiliry if and only if the application of the

check set identifies precisely which faults are present, provided the number of faults does

not exceed t. In order to evaluate the fault locatability of a system, the concept of row

intersection has been used [23], similar to the row intersection operation (denoted by l'I)

defined in [18].

THEOREM 3.2. An algorithm has t-fault-locatability i£ and only if, for all unequal

fault patterns, F i, F j _ F(t), it is implied that for all E" e ERROR(Fi), and for all E n

ERROR (Fj)

35

GET,, l]GET,, = Q

PROOF: The proof of _Js theorem is_ven in [23].

It has be._n obs_'ved [23] that a system is t-fault locatable if in any fault pattern of

cardinality k, rain(k, 2t+l-k) faults arc exposed for k = 1, 2.... min(2t, n). Algorithms

have be_n developed for determining the fault locatability of systems using this sufficient

condition which again need the exhaustive enumeration of all error patterns. Based on

these results, we derive better sufficiency conditions for t-fault locatability along with

our second model.

3.2.2. Limitations of the graph-theoretic model

Here we summarize the drawbacks of the graph model. As discussed in the preced-

ing sections, the analysis algorithms based on this model need exhaustive enumeration of

all error patterns and hence are of exponential complexity. Since one pseudo-data ele-

ment isintroducedforevery checking operation,thatwilleffectivelyincreasethe number

of dataelements in the system which in turnmeans a largerexponent of complexity.

In the next section we propose a matrix-based model which does not have the

above mentioned drawbacks. In order to incorporatethe invalidationof checks done by

faultyprocessors,we introduceone pseudo-data element per checking processor instead

of one for each checking operation (note thata processor may perform more than one

checking operation).The analysisalgorithms arc of linearcomplexity in the cumber of

dataelements,and polynomial inthe number of processors.

36

3.3. An Improved Matrix-Based Model

In an improved model for multiple processor systems, the relationships between

processors, data, and checks can be represented by three fundamental matrices, the PD

(Processor-Data) matrix, the DC (Data-Check) matrix, and the PC (Processor-Check)

matrix [467. Unlike the graph-theoretic model described in the previous section, we do

not make any assumptions regarding the fault secureness of the check evaluating proces-

sors in this model. Instead, the model is developed with the following general assump-

tions. Whenever a check evaluating processor becomes faulty, aU of the checks done by

that processor become invalid (Byzantine type faults are assumed here). If a processor is

performing both useful computation and check evaluation, we identify two kinds of

faults associated with it: (1) observable faults and (2) unobservable faults. For an observ-

able fault, at least one of the data elements produced by the faulty processor will be

erroneous, whereas for an unobservable fault all the useful computation results from the

processor will be correct. In both the above cases, all of the check evaluations done by

the faulty processor wiU be deemed to be invalid.

3.3.1. The model matrices

In the new model for multiple processor systems, the relationships between proces-

sors, data, and checks are represented by three fundamental matrices, the PD (Processor-

Data) matrix, the DC (Data-Check) matrix, and the PC (Processor-Check) matrix. We

define the following model matrices in terms of parameters N, the number of processors,

., the number of data elements, and q, the number of checking operations in the system.

37

DEFINITION 3.3. The PD matrix is an Nxn matrix such that

_{ _ if dj _ DATA (Pi)PDij otherwise []

DEFINITION 3.4. The DC matrix is an nxq matrix such that

{ Lfcj CHeCK<di)DCij = otherwise []

DEFINITION 3.5. The PC matrix is an Nxq matrix which is the product of the PD

and DC matrices. [2

It may be noted that so fax in this model we have considered only actual data ele-

ments. Until now, there is no relationship established between a checking operation and

the processor which performs that operation. (It may be noted that in the graph model

this relationship was accounted for through pseudo-data elements.) However, we will

incorporate this relationship between processors and checks performed by them in the

next section by defining a new set of pseudo-data nodes.

Until now, there exists a correspondence between the system graph and the model

matrices. If we split the tripartite graph into two bipartite graphs, a processor-data graph

and a data-check graph, the PD and DC matrices are the adjacency matrices of those

bipartite graphs, respectively. Now construct another bipartite graph having the set of

processor nodes and the set of check nodes as its parts such that there is an edge from

node Pi to node cj ff there is a path of length two between thes; two nodes in the original

system graph. The PC matrix is the adjacency matrix of this new graph (can be a multi-

graph). However, the correspondence between the graph model and the matrix model

will be lost once we introduce the concept of pseudo-data elements.

38

3.3.2. Physical significance of the model matrices

The physical significances of the PD and the DC matrices are clear from their

definitions. In the PC matrix, PCq represents the number of data elements of Pi checked

by check Cj. It can be seen that entries in the PD and DC matrices are either a 0 or a 1,

whereas the PC man-ix can have elements as large as n.

The importance of these matrices in the analysis of faults in the system will be

revealed in the following discussion. Without loss of generality, we can use the same

matrices for representing faults and errors in the system. The only difference is that in

the PD and PC matrices, the row corresponding to Pi stands for a fault in processor Pi.

Those elements of row Pi of the PD matrix will be I if the corresponding data elements

are erroneous due to a fault in processor Pi.

_f l if dj is erroneous when Pi is faldty
PDq 0 otherwise

With this interpretation of matrix entries, it is easy to observe that each row in the funda-

mental PD matrix, defined earlier, represents a faulty processor whose output data ele-

ments are all wrong. The PD matrix will be different for different error combinations at

the output. For coherence of terminology, the PD matrices resulting from various output

error combination are catled the syndromes of the original PD matrix as in Definition 3.3.

Correspondingly, we will also have different syndromes of the PC roan'ix. The DC

matrix will t.e independent of the output error combination and is determined on12, by the

system designer and hence, has only one syndrome which is the DC matrix itself.

39

3.3.3. Check invalidation

In order to accommodate the invalidation of checks performed by the faulty proces-

sors, we introduce pseudo--data elements into the system model. These pseudo-data ele-

ments are conceptually similar to the pseudo-data nodes associated with the graph

model, but are modeled and used differently. If a processor is performing one or more

check evaluations, a pseudo-data element of infinite weight is attached to that processor.

Later, every check done by that processor is assumed to be checking the correctness of its

pseudo-data element also. If the pseudo-data element is erroneous, all of the checks done

by that processor become invalid, since such a data dement has infinite weight. Thus,

check invalidation is translated into a problem of error detection at the output of a faulty

lW,.-ocessor.

Accordingly, the model matrices arc extended as follows. Suppose m is the number

of processors performing check evaluations.

DEFINITION 3.6. The PD matrix is an N×(n+m) matrix such that

if dj ¢ DATA (Pi)

if dj is the pseudo data element of Pi
otherwise

DEFINITION 3.7. The DC matrix is an (n+m)xq matrix such that

r-I

f i if Cj ¢ CHECK (di)
DCij = if Cj is resident in Pk and di is the pseudo data element of Pk

otherwise

The PC matrix is obtained by finding the product of the PD and the DC matrices.

El

40

EXAMPLE 3.2. Let us consider the system shown in Figure 3.1. The check c_ is

performed by processor P3 and the checks c2 and c3 are performed by P4- The

corresponding PD, DC, and PC matricesare

"I007

[00]0100101 0 I001

PD= 0000_ DC- 0 I II

0000 0 1001

0111

PC = PDxDC =Iit20 "

O0

0

3.4. Conclusions

In thischapter we have presented a new matrix-based model for the analysis and

design of fault-tolerant multiprocessor systems. The great complexity of the analysis

algorithms based on the existing graph-theoretic model was the prime motivating factor

in proposing the new model. How the reduction in complexity is achieved will be dis-

cussed in the next chapter. Itshould be noted thatthe matrix model is not the matrix

equivalentof the graph model proposed in [23]. There are subtledifferencesin the for-

mulations of the models. In the following, we summarize a comparison between the

graph model and the matrix model.

3.4.1. Comparison between the graph model and the matrix model

As described earlierin the chapter,the graph model consistsof a tripartitegraph.

Processors,data elements, and checks are the three parts in the graph. In the matrix

41

model we also identify these three entities, whose relationships are rupresented as the

PD, DC, and the PC matrices.

The main diffcrcncobetween the two models liesin the way checlcinvalidationis

handled when the processorperforming thatcheck isfaulty.In the graph-theoreticmodel

a pseudo-data node was definedalong with each check inthe system. This approach was

borne out from the definitionof fault-securechecks [12],in which checks are capable of

indicatingtheircorrectnessalso. In the graph model these pseudo-data nodes arc dis-

tinguished from the actual data nodes by theirmspcctivc positionsin the set of data

nodes. The disadvantagesof thisapproach arc:

(1) The ordering of the data elements has to be preserved during the analysis;in other

words, every data element (includingthe actualdata and the pseudo-data) has its

own identity.Itis thisconstraintwhich causes an exponential complexity of the

corresponding analysisalgorithmas we shallscc in the next chapter.

(2) Every time a new check isadded in the system, a new pseudo-data clcrncntisalso

added- Therefore,the complexity of the analysisalgorithm isexponential not only

in the number of data elements but alsointhe number of checks, inan indirectway.

In the matrix-based model, whenever a processorisperforming one or more checks,

one pseudo-data clement of infiniteweight isadded to the outputdata setof thatproces-

sor"(the actualdata elements assume unit weight in the model). The pseudo-data elc-

meritsand the actualdata elements are distinguishedfrom each other by thcirweights

ratherthan by theirpositions.This permits a specialgrouping of actualdata elcmcnts in

a system while considering allthe possibleerrorpatterns;data elements within a group

42

do not have individual identity. Based on this grouping, we illustratean

errorcollapsingtechnique,which eventuallyresultsin much lesscomplex analysisalgo-

rithms.

In the graph model, the system information is distributedand processed in two

domains: the processor-datadomain and the data-check domain. In the matrix model we

introduced one more domain of operation,the processor-check domain. In fact,the PC

matrix, which representsthe processor-check domain, isour main work space. The PC

domain isderived from the PD and DC domains, during which some informationmay be

lost.However, most of the lostinformationhappens tobc unnecessary forthe analysisas

we shallsee in the next chapter. Whenever necessary,we go back to the PD and DC

domains to supplement the information to the PC domain. Again, selectingthe PC

domain as the main domain of analysisgreatlysimplifiesthe analysisprocedure.

43

CHAPTER 4.

ANALYTICAL APPLICATIONS OF THE MATRIX-BASED MODEL

4.1. Introduction

In this chapter we describe the applications of the matrix-based model for the

analysis of ABFT systems. Following the definitions given in the previous chapter, we

develop algorithms for determining the fault detectability and locatability of ABFT sys-

tems. These algorithms are much less complex than the algorithms based on the graph-

theoretic model. The new algorithm for the fault detectability analysis is of linear com-

plexity in the number of data elements in the system, whereas the complexity of the loca-

tability algorithm is quadratic in the number of data elements. The reduction in complex-

ity is achieved by using: (1) a special error collapsing technique which allows the

analysis of a system without having to enumerate all the possible error combinations; (2)

simpler sufficiency conditions which are developed in this thesis. Even though these

algorithms are developed particularly for the analysis of ABFT systems, they are applica-

ble to the analysis of conventional fault-tolerant architectures such as N-modular struc-

t/a'e$.

We illustrate the applications of the algorithms by analyzing various fault-tolerant

signal processing architectures. Finally we provide an alternative method for the invali-

dation of checks performed by faulty processors.

44

4.2. Fault Analysis of a System

As far as the fault detectability and locatability of a system are concerned, we have

to consider only the observable faults, since the unobservable faults are not going to

cause any error in the useful data elements. However, it is necessary to consider the

detectability and locatability of observable faults in the presence of unobservable faults.

For example, consider a fault pattern consisting of faults on three processors/" _, t'2, and

P3. Let the fault present in Pl be an observable fault, and the faults in/'2 and P3 be

unobservable faults. Now, for the system to be 3--fault detectable, it is necessary that the

observable fault in P t be detectable in the presence of unobservable faults in P 2 and P 3.

Therefore, ff a fault is not observable, instead of assuming that that particular fault

is not present, in our analysis we consider it as a detectable fault. In order to define the

fault detectability and locatability of a system, we introduce the concept of observability

of a fault pattern.

DEFINrrION 4.1. A fault pattern is observable if and only if at least one of the indivi-

dual faults present in it is observable. []

DEFINITION 4.2. A fault paRcm is said to be completely detectable if it is either unob-

servable or it is detectable for all the possible output error combinations. []

In the following, we will use the terms fau/ta and fault patterns interchangeably to

mean eitheran individualfault_ a setof faultsdepending on the situation.

DEFINITION 4.3.A fault-tolerantsystem has t-faultdetectabilityifand only ifsome

check Ci willdefinitelyfail,provided the cardinalityof any observablefaultpatterndoes

not exceed t.

45

4.3. Analysis for Fault Detectability

For the analysis we define matrices rpD and rpc which are derived from the PD and

the PC matrices, respectively.

DEFINITION 4.4.The rpD matrix isdefined as the matrix whose rows are formed by

adding r differentrows of matrix PD, for allpossibledifferentcombinations of r rows,

and then setting all nonzero elements, except the infinity elements, to 1. []

Note that a nonzero element greater than 1 results from the addition of rows of the PD

matrix if the processors corresponding to those rows have common data elements. These

nonzero elements arc set to 1 in order to avoid duplication of the same data element.

DEFINITION 4.5. Matrix rpc is the product of rpD and the DC matrix. []

rpc is an [1 xq matrix. In the fault analysis, each row of rpD and rpc will represent the

situation in which r faults are present simultaneously. As a special case, it may be

observed that 1pc = PC.

DEFINITION 4.6. The row R of rpc is said to be completely detectable if and only if

the fault represented by R is completely detectable. I-1

If R represents an observable fault, there should be at least one element in the row R

which is less than or equal to the error detectability (h) of the check used, for all possible

errors. If we enumerate all the possible error combinations, the algorithm to check the

complete detectability of a row will be as complex as the previous ones. Instead, we use

an error collapsing technique so that the algorithm converges much faster and needs less

storage.

46

4.3.1. Algorithm to check whether R is completely detectable

The algorithmisoutlinedas ALGORITHM I.

In the following discussionwe willdescribe how the algorithm works. In the first

step,ifthe entriesof R are allzerosor infLrfity,then itisan unobservable faultand hence

isa completelydetectablefault.On the otherhand, ifsome of the entriesare zeros and the

restare greaterthan h,itmeans thatthe errorscaused by the faultare not detectable,and

hence the faultisnot detectable.As mentioned before,in the case of analysisof faultsin

systems, the fundamental matricesPD and PC representthe situationin which allthe out-

put elements of a faultyprocessor are erroneous [46]. In the algorithm we startwith a

row R which isa combination of some rows of the PC matrix. Therefore,R representsa

faultsuch thatthe output dataelements of theprocessors associatedwith R are allerrone-

ous. Ifat leastone element of R islessthan or equal to h and greaterthan zero (we call

ALGORITHM 1.

(1) If the elements of row R are either zero or infinity, R is completely detectable, stop.

Otherwise, go to step 2.

(2) If there is no element in row R which is less than or equal to h and greater than 0, R

is not completely detectable, stop. Otherwise go to step 3.

(3) Find all j such that 0 < Rj < h.

(4) If DCq -- 1 set rpDm -- 0, where i = 1, 2 q. Do the same for all j obtained from

step 3.

(5) If the elements of the syndrome of R are either zero or infinity, then R is competely

detectable, stop. Otherwise go to step 6.

(6) Find the new rPC matrix by multiplying the new rpD matrix obtained from step 3

with the DC matrix and go to step 1.

47

such an entry a "valid entry") we can conclude that the fault is demctable by some checks

provided all the data elements from the faulty processors are erroneous. This does not

imply that the fault will be detected for all possibl, en'or combinations.

For example, consider a system which is graphically represented in Figure 4.1.

Here,

DATA(PI)- {dl, d2}

DATA (/'2) - {d3 }

CHECK (dl)- CHECK(d3) - { C t }

CHECK(d2)= {C2}

Then we have the fundarmntal mau'ices

Obviously, the system is single fault detectable if h-'-l. In order m check whether the sys-

tem is 2-fault detectable we compute 2pc which is equal to [2, 1]. Since there is a 1 in

this row, the fault is detectable when all the data elements (dr, d2, and d3) are erroneous.

Hgure 4.1.

dl

P1 cl

o c2

P2 d3

Graphical representation of an example system.

48

Now consider the situationin which the faultyprocessor Pt produces an error in dl

alone. A faultin P2 willdefinitelycause an errorin d3. Thus, errorsin dl and d 3 will

invalidatethe check C_; atthe same time,check C2 willpass sincethe dataclement d2 is

not erroneous. As a resultifP_ and P2 are faulty,the faultmay not bc detected,and

hence the system isnot 2-faultdetectable.

This discrepancy is taken care of in Step 4 of Algorithm 1. The objective is to

check whether the faultisdetectablefor allpossibleoutputerrorcombinations. For that,

we use a technique callederrorcollapsing.All the elements of rpD which contributedto

the valid entriesof row R am set to zero. By doing this,effectivelywe arc removing

those errorswhich am detectableat the output. We may remove allthose errorssimul-

taneously,because ifatleastone of them were not removed, thatwould be detectableat

the output and hence the fault is detectable.

The new rpc is calculated by multiplying the rpD matrix obtained after error col-

lapsing with the DC matrix. This new matrix will be different from the old rpc in two

ways. The new matrix will have zeros in the corresponding positions where the old rpc

had valid entries. Some of the invalid entries in the old matrix might have become valid

entriesin the new matrix. This is because removal of errorsmay make some of the

invalidchecks valid.

This iterationisdone as given in Algorithm I to check the complete detectabilityof

row R. Itmay be noted thatthe same algorithm can be used for determining the fault

detectabilityof systems having fault-securecheck evaluationprocessors. In such a case,

allthe infinityvalues are setto zero and theanalysisisdone in the same way.

49

EXAMPLE 4.1. In this example, we present a simple instance of how error collaps-

ing can help in reducing the complexity of analysis. In Figure 4.2, processor P produces

three data elements d l, d2, and d3. Data element di (i = 1, 2, 3) is checked by check ci.

Also, note that the check ci checks data di only. We assume that the error detectability h

of the checks is equal to 1.

In order to detect or locate a fault in processor P, we start the analysis by determin-

ing the detectability and locatability of the worst possible error;, here we start with the

case where all three data elements axe erroneous. Since check ci is checking di only, an

error in di will always be detected by ci irrespective of the status of the rest of the data in

the system. Thus, we need check the detectability and locatability of only one error pat-

tern (in which all the data elements are erroneous) instead of checking for all the possible

(eight in this case) error combinations. N

In the following example, we illustrate the application of the error collapsing tech-

nique, for the analysis of a hypothetical fault-tolerant muldprocessor system.

dl

d3

cl
0

o c2

o c3

Figure 4.2. Example for error collapsing.

50

EXAMPLE 4.2. Consider a 4-processor fault-tolerant system (for simplicity of illus-

tration, we assume that the checks will yield valid results even when the processors

which perform those checking operations axe faulty) whose PD and DC matrices are

'I0_

01010 1001

PD-- 0 00 0 1 DC-- 0 1 11"

00000 1001

01 11

The corresponding PC matrix is

PC --
2 R2

0 R 3 "

1 R4

Assuming that the error detectability of the checks h- I, we consider complete

detectability of rows R l, and R2. Since the second element of R t is a valid entry, we col-

lapse the corresponding error PD 1.2 of the PD matrix. The resulting row syndrome of R 1

is [200] which has no valid entires at all, and hence is undetectable. Therefore, R1 is

not completely detectable. In the case of R2, if we collapse the error PD2, 4 corresponding

to the valid entry in R2, the reSulting row syndrome will be [010] which still has one

valid entry. If we further collapse the error corresponding to that syndrome also, the

resultant syndrome will be [000]. Then by Algorithm 1, R 2 is completely detectable. []

DEFINITION 4.7. The matrix rpc is said to be completely detectable if and only if

all rows of rPC arm completely detectable. []

THEOREM 4.1. A fault-tolerant system is t-fault detectable if and only if the

matrices ipc, for i = 1, 2 t, are completely detectable.

51

PROOF:

Proof for the necessary condition, (by contradiction): If possible, let the system be

t-fault detectable, and let ipc not be completely detectable for some i < t. This will

imply that there exists a fault pattern of cardinality < t which is not completely detect-

able. Therefore, the system is not t-fault detectable which is a contradiction.

Proof for the sufficiency condition: Complete detectability of ipc implies that

every fault pattern represented by the rows of iPC are completely detectable. Therefore,

the hypothesis of the theorem implies that every fault pattern of cardinality g t is detect-

able and hence the system is t-fault detectable. []

4.4. Analysis for Fault Locatability

Analyzing the system for its fault locatability is a much harder problem when com-

pared to the problem of finding the fault detectability. This is because, in the case of

locatability, we have to check not only whether some faults are detected, but also

whether that fault is distinguishable from other faults.

DEFINITION 4.& A system is said to have t-fault locatability if and only if the appli-

cation of the check set identifies precisely which faults are present, provided the cardinal-

ity of any observable fault pattern does not exceed t. []

LEMMA 4.1. A necessary condition for t-fault locatability for t >_1 of a system is

that _.iPDq < 1 for all j.

PROOF: We may prove the lemma by contradiction. _.iPDij < 1 implies that there

can be at most one 1 in every column of the PD matrix which means DATA(Pi) t'_

DATA(Pj) =_ for all i;q. If possible, let there be more than one 1 in a column, which

52

implies that the data sets produced by certain processors are not disjoint. In that case, if

an error is observed in the common data element or elements, it will not be possible to

conclude which faulty processor produced that error. Therefore, the system is not single

fault locatable. Therefore, the assumption that there is more than one 1 in a column is

wrong, and hence the proof. []

In most of the existing multiprocessor systems, processors have nondisjoint output

data sets so that the assumption DATA(Pi) ¢3 DATA(Pj)= _ is not valid. In those systems,

locating a faulty processor will not be possible according to Lemma 4.1. However, pro-

I

cessors whose data sets have nonempty intersections with other processors can be col-

lapsed into processor classes [23] so that the processor classes will have disjoint data sets.

DEFINITION 4.9. A processor class _i represents a maximal set of processors such

that for each processor p/e _i, there exists another processor Pt • _i, such that DATA (p j)

DATA (p,) _ 0. []

Any processor not belonging to any such processor class constitutes a class by itself.

One may be able to locate a faulty processor class (a processor class is said to be faulty ff

at least one of the processors in the class is faulty) during the fault diagnosis of the sys-

tem. The PD matrices for the processor classes are found by adding together the rows of

the PD matrix corresponding to the processors in the processor class and by setting all

nonzero elements to 1.

In the example given in Section 2.2 for the model matrices of a system, DATA (P l)

DATA(P2) = {d2}. Here, Pl and P2 will form aprocessor class. Processors P3 and P4

form two differentprocessor classes. Now thecorresponding PD and PC matrices arc

53

PD= 0 0 0 1 PC= 0 •

0000 1

For convenience, in the forthcoming discussion, we use the term locatability to mean

class locatability.

DEFINITION 4.10. Rows R t and R2 of matrix kPC are said to have 1 - 0 disagreement

if there is at least one valid element in row R t such that R2 has a zero in the correspond-

El

ing position.

DEFINITION 4.11. Rows R i and R2 of matrix kpc axe said to have 0 - 1 disagreement

if there is at least one 0 in either row R t or R2 such that the other row has a valid element

in the corresponding position. O

EXAMPLE 4.3. Consider the PC matrix given below.

PC -- R2 0 •

R3 1

Here, R l and R2 have 1 - 0 disagreement whereas R2 and R 1 have only 0 - 1 disagreement.

It can be seen that R t and R 3 have no disagreement at all. ['7

DEFINITION 4.12. If all pairs of rows of kpc have 0- 1 disagreement, then kpc is

said to have a 0 - 1 disagreement. []

DEFINITION 4.13. PC has 1 - 0 disagreement with kpc if and only if every row R of

PC has 1 - 0 disagreement with all rows of kpc v:hich do not contain R. []

It may be noted that a 1- 0 disagreement implies a 0-1 disagreement, whereas a

0- 1 disagreement does not imply a 1- 0 disagreement. That is, 1- 0 disagreement is a

stronger condition than a 0 - 1 disagreement.

54

4.4.1. Physical significance of disagreement

When two rows of rpc have 0-1 disagreement, that means that the faults

corresponding to those rows am distinguishableprovided the outputsfrom the processors

involved in those faultsam allerroneous. A I- 0 disagreementbetween PC and rpc will

imply that every individual fault is exposed (or not masked) (as defined in Chapter 3) in

all fault patterns of cardinality r + 1. This is because every row R in PC has a

1 -0 disagreement with all rows of rpc which do not contain R. In both of the above

cases we need all data outputs from a faulty processor to be erroneous, which may not be

the case allthe time. Therefore, we define a stronger relationbetween rows, namely,

complete disagreement.

DEFINITION 4.14. A disagreement (0-1, or 1-0) between two rows is called a

complete disagreement, if the disagreement exists for all possible error combinations

caused by the faultsassociatedwith thoserows. O

The disagreement defined in[31]was similarto the 0-I disagreement defined in this

thesis.However, itmust be noted thatthe disagreement used in [31]was defined in the

set of errorpatterns mtber than in the set of fault patterns.

In order to check for the complete disagreement between two rows wc use an algo-

rithm similar to the one used for finding the complete detectability. The procedure is

outlined in Algorithm 2. Whenever there is a disagreement between rows, the valid entry

or entries which caused the disagreement are set to zero by error collapsing as described

in Algorithm 1. The algorithm always converges because removal of an error will never

convert a 0 to a 1 or a higher value, whereas it may or may not decrease the values of

55

nonzero entries. (Henceforth, we use the term disagreement to mean

complete disagreement.) Now we prove some necessary and sufficient conditions for the

t-fault locatability of a system, and develop an algorithm for the analysis.

From previous discussions in Chapter 3, we observe that whenever the cardinality

of the fault pattern is < t, all individual faults should be exposed in order for the fault pat-

tern to be locatable. When the cardinality is 2t - r for 0 <r <t, a minimum of r + 1 faults

should be exposed. In order to check whether the system is t-fault locatable, we have to

consider all fault patterns of cardinality _2t. We prove a simpler sufficient condition for

t-fault locatability so that we need to consider only fault patterns of cardinality at most t.

THEOREM 4.2. A necessary and sufficient condition for t-fault locatability is that all

individual faults are exposed in every fault pattern of cardinality < t, and all fault patterns

of cardinality t are distinguishable from each other.

PROOF: We prove this theorem through a simple construction. We use rectangles

to represent faults. The length of the rectangle corresponds to the cardinality of the fault

ALGORITHM 2.

Input to the algorithm arc rows R 1 and R 2 whose complete

disagreement is to be checked.

(1) Check whether Rl and R2 have a disagreement. If not, output NO, stop. Otherwise

go to (2).

(2) Collapse errors and check whether the syndrome elements of either R 1 or R 2 are all

zeros or infinity. If so, output YES, stop. Else go to step 1.

56

pattern.When two fault patterns have common individual faults, the rectangles overlap

in their positions. Consider two faults F 1 and F2 whose cardinalities are < t.

Case 1.

Let the ca_rdinality ofFt = IF1 I --t andF2 cFt. The representation using rectangles is

shown in Figure 4.3. By assumption, all individual faults in F l are exposed (since the

cardinality is _), which implies that there is a 0 - 1 disagreement between regions A and B.

But F2 = B which impliesF I has a 0 - Idisagreementwith F 2. That is,FI and F 2 _ dis-

tinguishable:

Case 2.

w

Case I.

B I

A I B I

r_l Blcl
[_ > t :[

Case 2.

I- t _'

r,I _ I B I

_,1 A I B I

F' 1

I C] F 2

I B I c Ir_

I A I B I_'l

F' 2
C

I_ t ='

Figure 4.3. Fault patterns of cardinality < t.

$7

Let IFll -rand IF2I --r <t. AlsoFt _F2 =- _. We augment F2 with some faults con-

tained in pattern F t such that the augmented F2 (F'2) has cardinality t. Now F l and F'2

are distinguishable by the assumption of the theorem. That is, region A has a

0 - 1 disagreement with region C. (Note that since region B is common to both F _ and F'2,

it will not contribute to the distinguishability of the faults.) But C - F2 and hence F 1 and

F2 are distinguishable.

Case 3.

Let IF11 <t, IF21 <tandFt _F2_O, also IF1 uF21 > t. (This is the most general

case.) In the figure we construct a fault F'I by augmenting F1 with some faults (C') from

region C such that IF'II -t. Similarly F' 2 is constructed by adding a portion ofA (A') to

F2. Now F'I and F'2 are distinguishable, which means regions A -A" (part of region A

which contains the faults which are not contained in A') and C - C" have a 0 - 1 disagree-

ment. But A -A" c Fl, and C - C" c F2. Therefore, F1 and F2 have a 0 - 1 disagreement

and are hence distinguishable.

Thus any two fault patterns of cardinality < t are distinguishable and hence the

sufficiency condition is proved. Proof for the necessary condition follows from the

definition of t-fault locatability. 77

The above results may be translated into the domain where we use the new model

for the analysis of fault-tolerant systems.

THEOREM 4.3. A given fault-tolerant system is t-fault locatable if and only if

matrices PC and ipc, for i = 1, 2.... (t-l), have 1-Odisagreement, and tpc has

0- 1 disagreement with itself.

58

PROOF: Thecondition that PC has 1 - 0 disagreement with ipc implies that all indi-

vidual faults are exposed in fault patterns of cardinality < t. Since tPC has 0 - 1 disagree-

ment with itself, all fault patterns of cardinality t are distinguishable. Hence the system is

t-fault locatable by Theorem 4.2. []

EXAMPLE 4.4. Now we will present a hypothetical system in order to illustrate the

various concepts we developed in the preceding sections. Consider a computing system

consisting of 5 processors each of which produces one data element each, Every proces-

sor performs useful computation as well as 4 checking operations on the data produced

by the remaining 4 processors. The PC matrix for such a system is shown in Figure 4.4.

In this example we assume that the processors involved in checking operations are not

fault secure. Complete analysis of the system shows that it is 4-fault detectable and

2-fault locatable. It may be noted that this is the maximum detectability and locatability

possible with a system having 5 processors.

m

1

0

0

0

Figure 4.4.

_ 1000100010001000

000__010001000100

1000100_----00100010

01000100010__0001

001000100010001__

The PC mau-ix of the hypothetical system.

w

59

4.$. Complexity of the Algorithms

In the following, we provide a rigorous analysis of complexities of various algo-

rithms proposed in preceding sections.Assume thatn = N xd, where n isthe totalnumber

of data elements, N is the total number of processors, and d is the average number of data

elements produced by each processor. Complexity of the algorithm based on the graph-

theoretic model for determining the fault detectability (t faults) is exponential in the

number of data elements n in the system. The algorithm has to check the detectability of

all possible error combinations caused by every fault in F(t).

Therefore, the complexity is

i,,,#+1l'_ 24/o (z ['il×).

ia
i,=#+1 f_ --

_O(_ ['il x2n)

tn

= O (N'x2 t¢)

which is polynomial in N for a given value of t _ N (which is usually the case) and

exponential in n.

Because of the error collapsing technique we use, the complexity of the algorithm

based on our second model is linear in the number of data elements as shown in the fol-

i,=t+l f_

lowing. The complexity of the detectability algorithm is O (_ |'il xf(id)), where
i,=l '"

f (id) is the number of steps taken in error collapsing which is bounded by 1 < f (id) < (id).

More simplification will yield that the complexity

tlt

= 0 (N'x _-)

60

= O (N t-l xm),

which is a polynomial in N and a linear expression in n.

The complexity of the algorithms for fault Iocatability analysis is higher than the

complexity of the detectability algorithms. In the graph theoretic model based algo-

rithms [23] l-fault locatability of the system is determined by checking whether every

individual fault is observable in the presence of fault patterns of cardinality ranging up to

_=_f_

21. Therefore, the complexity is O (i_ [']j x2_ x N x2 d) -- O(N _+I.. x 2 N). Due to the

new sufficient condition established in Theorem 4.2 and due to the error collapsing tech-

nique, the complexity of the algorithm based on the matrix model is only

O (xf(/d) xNxf(d) + xf(Id))-O (N t-I xIxn2+N2l-Ixln).

Here the second term corresponds to the complexity involved in comparing faults of car-

dinality I among themselves. It may be noted that the complexity is a polynomial in N

and a quadratic in n.

4.6. Examples for the Applications of the Model

In this section, we present a few carefully selected examples to illustrate the appli-

cation of the model for the analysis of few realistic fault-tolerant architectures.

EXAMPLE 4.5. Consider matrix multiplication using checksums on a mesh con-

nected p, ocessor array. The fault tolerance scheme has been proposed by Huang and

Abraham [47]. We will briefly describe the system below.

Multiplication of two 3x3 matrices X and Y is done on a mesh connected processor

array as shown in Figure 4.5(a). We assume that input data elements are broadcast on

61

buses; the processors input the data from the buses. Under a processor failure, we

assume that only the corresponding data element of the output matrix Z becomes errone-

ous. After the computation, the result Z resides in the local memories of the processors.

Now the checking operations (six of them, three for rows and three for columns) are per-

formed.

Thus, we have

DATA (Pi) - di for i ffi 1, 2 9.

CHECK(dr, d2, d3)=Cl

CHECK(d4, ds, d6) = (72

CHECK(d7, ds, d9) = C3

CHECK(dl, d4, dT) ffiC4

CHECK(dz, ds, ds) = C5

CHECK(d3, d6. d9) = C6.

First, we do the analysis of the system assuming that the check evaluating proces-

sors, P3, P6, PT, P8 and P9 a_ fault secul_. In that case, the fundamental matrices of the

system willb¢

PD = 19, where 19 is the identity matrix of order 9.

DC =

'100100

100010

100001

010100

010010

010001

001100

001010

001001

62

PC = PDxDC = DC, since PD = 19.

During the analysis of the system for t-fault detectabili_, we see that rpC is com-

pletely detectable for r = 1, 2, 3. In 4pc the row R corresponding to the sum of rows

P l, P2, P4 and P5 of PC is [2 2 2 2 0]. Since error detectability of checksum encoding is

1 (i.e., he1) none of the elements in R is valid. Therefore, R and hence 4PC is not com-

pletely detectable. Then, by Theorem 4.1, the system is 3=-fault detectable. []

Next, we will consider the fault locating capability of the algorithm. Since the

matrix PC has a 0- 1 disagreement with itself, the algorithm is 1-fault locatable. In the

analysis procedure we observe that PC does not have 1- 0 disagreement with 2pc. For

example, row P l of PC is [1 0 0 1 0 0] and this does not have a 1 - 0 disagreement with

the row P2P4 (i.e., the sum of P2 and P4) of 2pc which is equal to [1 1 0 1 1 0]. Hence

the system is at most 2-fault locatable. As a next step we check whether all faults of car-

dinality 2 are distinguishable. For that, 2pc should have 0- 1 disagreement with itself.

One can observe that rows PIP5 = [1 1 0 1 1 0] and P2P4 = [1 1 0 1 1 0] of 2pC do not

have 0- 1 disagreement. Hence 2pc does not have 0- 1 disagreement and the system is

1-fault locatable by Theorem 4.3.

Now we will analyze the same system with the assumption that the check evaluating

processors are not fault secure. According to the definition of the fundamental matrices,

we attach one pseudo-data element each to every check evaluating processor. It may be

observed that the system is O-fault detectable and O-fault locatable. This is because, the

data element d 9 produced by processor P9 iS checked only by processor P9- If there

occurs a fault in Pg, all the checks done by P9 are considered to be invalid and hence the

63

I

I

(a) Mesh connected array
(b) _node hypercube

Figure 4.5. Processor arrays.

error in d9 cannot be detected. On the other hand, from the description of the algorithm

it may be noticed that d 9 is not a useful data element as far as the original matrix multi-

plication is concerned. Therefore, an error in d 9 may be disregarded during the analysis,

which effectively means that the element d9 call be taken off from the model. As far as

check evaluation is concerned, processor P9 checks the correcmess of data elements d3,

d6, dT, and d8 which are also not useful data elements. Thus, the processor P9 is not

doing any useful job in terms of computation or check evaluation. Therefore, we remove

P9 from the model. As mentioned before, since the actual data elements produced by

other check evaluating processors are also not useful for the original matrix multiplica-

tion, they are also discarded. Therefore, the final model should be such that each check

evaluating processor has only one pseudo-data element associated with it. Accordingly,

the fundamental matrices are

PD =

"lO0000

010000

00_-000

000100

000010

00000-

000000

000000

0 O"

0 0

O0

O0

O0

0 0

-0

O-

able.

'1010'

1001

1000

0110

DC= 0101

0100

00.10

0001

The complete analysis shows that the system is 2-fau/t detectable and 1-fault locat-

EXAMPLE 4.6. In this example we analyze an algorithm for fault-tolerant matrix

multiplication using checksum encoding done on a hypcreubc. We consider partitioned

matrix multiplication done on a 4-node hypcrcubc as shown in Figure 4.5 (b). In the

figure, the circles represent the hypcreubc nodes and the square represents the host pro-

cessor. In the fauk-tolcrant algorithm suggested in [15], processor 1 checks the correct-

ness of the data computed by processor 2 and sends a "pass" or "fail" signal to the host

processor. At the same time processor 2 checks the data computed by processor 1 and

sends a signal to the host. Similarly, processors 3 and 4 also check each other and notify

the host of the result. []

65

Here, even though every processor Pi for i = 1, 2, 3, 4, produces data di, it is not

necessary to include them in the PD matrix. This is because the check by the host pro-

cessor is done only on the flag signals generated by the node processors. Let ei be the

flag signal generated by Pi. Then, from the description of the algorithm, we have

CHECK(el, e2) = Ct

CHECK(e3, e4)= C2.

Since both the checks are resident in the host processor, if the host processor fails, all

checks performed in the system will become invalid, and in that case it is O-fault detect-

able. However, we are interested in the fauk tolerance of the hypercube nodes, provided

the host processor does all the checks correctly. Now the PC matrix is

PC --

It can be seen that the system is 1-fault detectable and O-fault locatable. However, if

the mutual checking processor pairs are changed in the fault-tolerant algorithm, that is if

instead of 1, 2 and 3, 4, checking is done by pairs 1, 3 and 2, 4 and flag signals sent to the

host processor, in effect we are adding two more checks given by

CHECK(e 1, e3) = C3

CHECK(e2, e4) = C4.

The new PC matrix is

101i)

100

PC- 011 "

010

46

Carrying out a similar analysis we found that the the algorithm is 3--fault detectable and

1-fault locatable. This example, was specifically chosen in order to illustrate the impor-

tance of selecting data elements for the PD matrix so that the analysis will be easier.

EXAMPLE 4.7.In thisexample we consider the Advanced Onboard SignalProces-

sor (AOSP) architecture[48]. The AOSP isan architecturalconcept foran advanced sig-

nal processing computer thatprovides a fault-tolerantenvironment capable of supporting

a wide range of signalprocessing applications.Itisa loosely-coupleddistributedmul-

tiprvcessorsystem in which a largenumber of identicalprocessorsknown as Array Com-

puting Elements (ACEs) communicate both data and controlinformation via packctizcd

messages over networks of high-speed buses.

In order to achieve fault tolerance, one may incorporate some kind of system level

fault diagnosis in the AOSP architecture. In this example we consider an AOSP with sys-

tem level fault diagnosis. The encoding scheme to be used depends on the particular sig-

nal processing application for which AOSP is used. In the example we do not assume

any particular computation or encoding scheme. The only assumption made is that the

encoding scheme can detect one error (i.e., h-l).

The architecture of the AOSP is depicted in Figure 4.6. Due to the high density of

the intereormection network, we have the luxury of having a fault-tolerant scheme in

which any arbitrary processor can check the correctness of the computation done by any

other processor. As an example we consider a scheme in which

CHECK(ds, d4, d3) -" C 1

CHECK(ds, de, dl) " C2

67

/

/

\

\

Figure 4.6. AOSP architecture.

1
CHECK(d4, d2, dg) = C3

CHECK(dl, ds, dg) = C4

CHECK(d3, ds, dT) - C5

CHECK(d3, ds, d9) = C6.

Suppose that the checks cl through ca are performed by processors Pt, P2, P3, P4,

P6, and PT, respectively. The analysis shows that the system is 1-fault detectable and

O-fault locatable. []

EXAMPLE 4.8. Consider an 8 node hypercube (3-cube) performing partitioned vec-

tor computations. Each node computes three partitions (subdivisions) of the same vector.

After the first set of computations, the partial results are rotated in the clockwise direc-

tion in the lower dimension (involving four processors each) for further iteration as

shown in Figure 4.7. Each computed part is check evaluated by three neighboring pro-

cessors in their order (i.e., the first neighbor checking the first part, the second neighbor

68

checking the second part and so on). It can be determined that the fault detectability of

the system is 1, 2 and 5 for an error detectability of 1, 2 and 3, respectively.

4.7. An Alternative Approach to Check Invalidation

In this section we reconsider the problem of invalidation of checks, performed by

faulty processors and develop an alternative method to handle the problem.

In this approach the analysis procedure is divided into two steps; (1) primary

analysis, and (2) secondary analysis.

DEFINITION 4.1S. Home Processor of a check is defined as the processor which per-

forms that checking operation.

The primary analysis consists of analyzing the system with the assumption that a

check wiU not be invalidated if its home processor is faulty. In the secondary step, some

additional information related to the correspondence between processors and checking

)

I

Figure 4.7. Data rotation in the hypercube.

69

operations performed by them is derived. With the help of the results obtained in the

primary and secondary analyses, the actual fault tolerance capabilities of the system are

determined. Even though this approach is more tedious than the one using

pseudo data elements, it has the advantage that it will induce an easier design technique;

first design the primary system and then decide the home processors for various checking

operations using the properties we derive in the next section.

4.7.1. Secondary analysis

Before going into the details of the procedure, we define the following parameters

associated with a fault-tolerant multiprocessor system.

DEFINITION 4.16. Self-Tested Set (S/S) is defined as a set of processors such that at

least for one particular possible output error combination of these processors, every valid

check done on these processors is resident in that set itself.

EXAMPLE 4.9. Consider a system described as

DATA(PI) = {dl, d2, d3}

DATA(P2)- {d2, d4}

DATA (P3) = {d5]

DATA (/'4) - {de }

CHECK(dr) -- {C1 }

CHECK (d2) = {C 2 }

CHECK (d3) = {C 1}

CHeCK(d4) = {C2, C3 }

CHECK (as) = { C, }

7O

CHECK(d6) = {C2, C3 }.

Now assume thatcheck c_ isresidentin processorP2, c2 in P3, and check c3 inP4.

Itcan be observed thatifprocessorsP2 and P3 are faultyand ifthe corresponding error

patternisd2, d_, the validcheck operationsdone on the output errorpatternare c_ and

c2. These two checks are residentamong processorsP2 and P3 and hence the set {P2,

P3} is an SIS.

In further discussions, the cardinality of an $7S is denoted by S.

DEFINITION 4.17. An STS is called a m/n/ma/STS if removal of at least one proces-

sor from that set will destroy the property of the ST$.

DEFINITION 4.18. Smi_ is defined as the cardinality of the smallest minimal STS of

the system.

Letfbe a fault pattern involving processors Pl. P2 Pi and let c I. c2 ej be the

checks which give valid output (that is, detect the fault) when all the data elements pro-

duced by the faulty processors are erroneous. Three cases may arise as described below.

Case 1.

The checks ci. c2 cj are resident in the processors of setf. In that case, set fis

an STS.

Case 2.

Among the set of valid checks, some of them axe resident in f and some of them are

not resident inf. This does not guarantee that fis not an STS, since there may exist a par-

ticular error pattern for which f is an 5"7"5. In order to check that, enumerating all error

combinations will be inefficient. Instead, we propose an error collapsing technique.

71

(Distinguish this error collapsing technique from the one described in Section 3.)

Case 3.

All the valid checks are resident outside the set f. This is a special instance of

Case 2, where the number of checks resident in set/is equal to zero.

4.7.1.1. Algorithm to check whetherfis an STS

The procedure is given in ALGORYYHM 3.

In order to simplify the implementation of the algorithm for determining whether a

given set of processors form an STS, we define one more model matrix called an H

(home) matrix which gives the relationship between processors and checking operations

resident in them.

DEFINITION 4.19. The H matrix is an nx/matrix such that

Hij = (1 if Cj iSOtherwiSeresidentin Pi

ALGORITHM 3.

(1) Collapse errors which are checked by those checks which are not resident inf.

(2) If at least one processor in f is left with no output error at all, then f is not an STS.

Otherwise go to step 3.

(3) Find the new set of valid check elements. If all of them are in f then the situation is

equivalent to Case 1, and/is an STS. Otherwise go to step 1.

72

DEFINITION 4.20. The matrix rH is defined as the one whose rows are formed by

adding r different rows of matrix H, for all possible different combinations of r rows.

It may be noted that the PC matrix and the H matrix will have the same dimensions,

and hence rpc and rH will also have same dimensions.

DEFINITION 4.21. (Covering) A valid check is said to be covered with respect to

row R of rpc if row R of rH has a one in the corresponding position.

DEFINITION 4.22. A row R of rpc is said to be covered if all the valid entries in that

row are covered.

DEFINITION 4.23. A row R of rpc is said to be completelycovered if row R is

covered for atleastone possibleerrorsyndrome.

The physical significanceof covering isthatifa check iscovered with respectto R,

the check operation isresidentin the processor setR. If row R is covered, then allthe

valid check operationsare residentin the processor setR itselfwhen allthe output data

elements are erroneous. Complete covering implies thatallthe valid check opcrations

are residentin setR itselfforatleastone possibleoutputerrorcombination.

LEMMA 4.2. A processor set fis an STS if and only ff it is completely covered.

PROOF: Proof follows from the definitions of STS and complete covering. []

Now the previous algorithm to determine the STS nature of a processor set can be

restated and implemented in terms of covering. The algorithm is called the STS ALGO-

R£FHM.

EXAMPLE 4.10. In Example 4.9, given to illustrate the property of STS, the PC and

the H matrices are

73

STS ALGORITHM

To check whether fis an ST$.

(1) Collapse errors which are not covered with respect tof.

(2) If at least one row of the PD matrix is zero, then f is not completely covered, and

hence not an STS. Otherwise go to step 3.

(3) Check whether the new syndrome obtained after error collapsing is covered. If so, f

is an STS; otherwise go to step 1.

ii112PC= 0 H=

1
[iOlo1 "

0

Consider the row [1 2 1] of 2pc (sum of 2_a and 3"a rows of PC), the corresponding

row in 2H is [1 1 0]. If h = 1, only the third check is uncovered. If we collapse the

corresponding error, the new syndrome will be [1 1 0] which is covered. Therefore, the

row [1 2 1] is completely covered, and hence, processors P2 andP3 form an STS.

THEOREM 4.4. If t is the fault detectability of a system obtained after primary

analysis, any fault pattern of cardinality < t is undetectable if and only if the set of proces-

sors involved in the fault is an STS.

PROOF:

Proof for the sufficiency condition follows from the definition of STS.

Proof for the necessary condition, (by contradiction): Let the fault patiem F be undetect-

able, at the same time F is not an STS. By the definition of an STS, this implies that set F

74

4.7.2. Analysis to determine actual Iocatability

The actual locatability l, zt of a system can be determined by a similar type of

analysis. Instead of STS we define another type of processor set called

Self-Locating Set (SIS).

DEFINITION 4.24. Self Locating Set (SIS) is a set of processors for which at least one

output error combination exists such that all the valid check operations, which distin-

guish faults in these processors from all other faults of cardinality less than or equal to

the cardinality of the processor set, are resident in the given processor set itself.

In the following, we formulate an algorithm to determine whether the given set is an

SIS.

Let f= {P1, Pz P,}. That is, rE rpc. Now to check whetherfis an SLS we use the

SIS ALGORITHM.

THEOREM 4.6. Actual fault locatability l,a of a system is

laa =rain(l, SLrm - 1),

where I is the fault locatability obtained in the primary analysis and Smi, is the cardinality

of the smallest minimal SIS.

is such that for every output error pattern, there exists at least one valid check operation

which is resident in a processor outside the set F and hence the fault is detectable. []

THEOREM 43. The actual fault detectability of the system t,a =rain(t, Sm_- 1),

where t is the value of fault detectability obtained after primary analysis.

PROOF: Proof of the theorem follows from Lemma 4.2. []

75

SL5 ALGORITHM

For all rows Pis in the PC matrix which are also

elements of the set f

(1) Find all the checks which ¢auses complete 1-0 disagreement with the row f- Pi (ie.,

the set fexcluding Pi) of r'tpc.

(2) If all checks are covered with respect to f, then f is an SLS. Otherwise, go to step 3.

(3) Find all the checks which are not covered, and collapse corresponding errors. In

any stage if row Pi of PC becomes zero, then f is not an SLS. Otherwise go to step 2.
Q

PROOF: Proof of the theorem is similar to the proof of Theorem 4.4. r"]

EXAMPLE 4.11. In this example we present a complete analysis of a system using

the secondary analysis we developed in this section. We consider the fault-tolerant AOSP

architecun'e illustrated in Example 4.7. The check operations are distributed among the

processors in such a way that the H matrix

"0

0

0

0

H= 0

0

0

1

0

is

0000C

0000C

00001

0000C

0000C

10000

00010

0000O

01100

From the primary analysis of the system, using the fundamental matrices, we have

already found that the system is 3--fault detectable and single fault locatable; i.e., t = 3 and

/--|.

76

Secondary analysis: It may be observed that none of the rows of PC axe covered,

whereas the row corresponding to the sum of rows Ps andP6 in 2pc is [1 1 0 0 0 0] and

is covered. (Note that the corresponding row in 2H is also [1 1 0 0 0 (3].) Thus, $_n =2

and by Theorem 4.4, actual fault detectability t_, = min(3, 1) =1.

According to the check distributions, check c l is the one and only check which dis-

tinguishes the faults in processors P6 and Ps. However, this check is covered by the 8th

row of the H matrix and hence SLmia = 1. The actual fault locatability l,_t = rain(l, 0) = 0.

4.8. Further Extensions

Applications of the matrix-based model for the diagnosis of faults in a fault-tolerant

system were further investigated by Vinnakota and Jha in [49].

The diagnosis problem is defined as, given a syndrome S, determine which fault

produced that syndrome. The authors used the matrix-based model for locating and iden-

tifying a fault, once its presence is detected. They observe that those faults which do not

have 1-0 disagreement with every row of I'Ipc arc not elements of the candidate fault
$

pattern. This is borne out fi'om the fact that for every locatable fault F, every processor in

F is checked by at least one valid check that does not check any other processor in F.

Based on this observation, an algorithm has been proposed. However, this algorithm

tackles the problem in a roundabout fashion. Therefore, we suggest a straightforward

algorithm for identifying the fault present.

DEFINITION 4.25. The matrix PCs is obtained by deleting all the columns of the PC

matrix, corresponding to the O's in the syndrome S and then deleting aU the resulting zero

rows.

77

DEFINITION 4.26.PCs, isthe matrix obtained by deletingthe rows in PCs which do

not have a complete 1-0 disagreement with I'Ipcs. I-1

4.8.1. Description of the diagnostic algorithm

Motivation behind performing up to step 3 is obvious from the definitions of the

matrices PCs and PCs,. In PCs, we have included only checks which are flagging a valid

"error" output (that is the output is 1). Therefore, if the number of rows in PCs, is _<l,

there cannot be any row representing a nonfaulty processor. If the number of rows in

PCs, is > l, the size of the fault present cannot be larger than l by definition of

l-fault locatability. However, we have to check whether the fault present is of cardinality

< I. In the following discussion we find that that is also not possible.

If possible, let the fault pattern F be of size less than 1. Again, by the definition of

PCs,, F is checked by all the checks in PCs,. Then for any processor p in PCs, which is

DIAGNOSTIC ALGORITHM

(1) Compute PCs for the given syndrome S.

(2) Compute I'IpCs.

(3) Compute PCs,.

(4) Ifthe number of rows inPCs, is:;I,then the processorscorresponding tothe rows of

PCs, representthe components of the requiredfaultpattern.Otherwise go to step5.

(5) Compute Ipcs,.. qhe row which corresponds to the given syndrome represe_lts the

fault to be diagnosed.

78

fault-free, the set of checks that check that processor are checking the processors in the

fault pattern F which are also fewer than I in number. This contradicts the conditions for

l-fault locatability. Therefore, the only possibility is that the fault pattern that we are

looking for is of cardinality I.

Now to determine exactly which fault pattern has occurred, we have to consider all

the l-combinations of the faults represented by the rows of PCs,. Then, by checking the

equality of the rows of Ipcsr with the given syndrome, we can conclude which fault has

been present in the system.

It should be noted that the diagnosis procedure described here needs an a priori

knowledge of the fault Iocatability of the system; one can determine the locatability of

the system using Algorithm 2 given earlier in this chapter. In fact, the diagnosis pro-

cedure could be integratedwith the procedure fordetermining the faultIocatabilityof the

system.

4.9. Results and Conclusions

The concept of concurrent fault diagnosis involves the application of checking

operations on the data generated by multiprocessor systems to obtain reliable results. We

have proposed a new matrix-based model for analyzing the fault-detecting and -locating

capability of such systems. A uniform framework was constructed in which faults in the

processors performing useful computations can be treated along with taults in the proces-

sors evaluating the checks. The necessary and sufficient conditions for fault detection

and location were derived. The algorithms based on these derived conditions are less

complex than the existing algorithms because of the error collapsing technique we intro-

79

duced and because of the simpler sufficiency conditions. The algorithms were used to

determine the fault detectability and locatability of some realistic systems.

These algorithms have been implemented in C under UNIX on SUN workstations.

The program takes the algorithm/system description as its input. The program analyzes

the system for its fault detectability first, and then uses that result to evaluate the locata-

bility. Some typical run times are given in Table 4.1 for some of the example systems

discussed in the preceding sections. In the table, Sl through $4 are the systems described

in Examples 4.6, 4.5, 4.7, and 4.8, respectively.

Table 4.1. Typical run times for the fault diagnosis program

Example #P (=N)

4S1

S2

S_

S_

$4

#d (=n)

4

8 8

9 9

9 9

8 24

h t 1 Runtime

(see)
1 3 1 3.1

1 2 1 6.0

1 1 0 3.6

2 5 1 118.3

3 2 0 8.9

#P is the number of processors
#d is the number of data elements

CHAPTER 5.

DESIGN OF ABFT SYSTEMS

8o

5.1. Introduction

There are twty ways to approach the problem of designing algorithm-based fault-

tolerant systems: (1) given a non-fault-tolerant system, determine an efficient distribu-

tion of checks among the output data elements so that the system has the desired amount

of fault tolerance; (2) given a fault-tolerant algorithm, synthesize an architecture so as to

maximize quantifies such as the fault detectability and locatability of the system. Both

the approaches have their advantages and disadvantages. In the first approach, the fault-

tolerant design is constrained by the fixed, non-fault-tolerant architecture. In the second

approach, performance may be sacrificed in the process of achieving high fault tolerance.

Since most of the commercially available multiprocessors are built to maximize

their performance, usually they do not carry any fault tolerance capabilities as such.

According to the requirements of the application, it is up to the fault tolerance designer to

make the system fault-tolerant. Therefore, in practice, the designer is forced to adopt the

first approach. This is the philosophy followed by previous researchers also [50,51].

Since the first approach is immediately applicable to existing architectures, we also look

at the problem from the first point of view. However, our methodology is different from

the existing ones.

81

The design of fault-tolerant multiprocessors that have processors producing more

than one data element by modifying the non-fault-tolerant architectures was considered

to be an intractable problem [50]. In that study, in order to design a system with the

required fault tolerance capabilities, first the cardinality of the largest error pattern gen-

erated by all possible faults is determined and the system is designed to detect and locate

that number of errors. In this thesis, we propose a direct scheme to design such systems

which eventually results in a smaller number of checks compared to the previous

methods. The design procedure is illustrated with examples. A comparison between the

existing schemes and the new scheme is done with respect to the number of checks

rexlui_d for each scheme.

5.2. Previous Work

Previous studies done by Banerjee and Abraham [50] and then by Rosenkrantz and

Ravi [51] were geared towards computing the bounds on the number of checks required

to be attached to a given non-fault-tolerant architecture in order to make it fault-tolerant

in the desired amount. In the first study, bounds were derived for the number of checks

required for the desired amount of fault detectability and locatability. The bounds for the

detectability were later enhanced in the second study.

In both cases, bounds were developed through algorithmic procedures to construct

such a system. The design of systems that have processors producing multiple data ele-

ments was considered to be an intractable problem. As a solution, they suggested an

indirect approach. In order to design a system for r-fault detectability, first the size of the

largest error pattern (let it be equal to s) for all fault patterns was determined and the sys-

82

tern was designed for an error detectabilityof s. As an example, consider a non-fault-

tolerant multiproccssor system consisting of 4 processors. Processor P l produces 3 data

elements, P2, 2 data elements and P3 and P, produce one data element each. If the sys-

tem is to be designed to be 2-fau/t detectable, first all the fault patterns of cardinality two

are enumerated and their corresponding error patterns are determined. Then, the size of

the largest error pattern is computed; in the example it is 5. (Note that the size of the

largest error pattern caused by faults of cardinality gt is always less than or equal to the

size of the largest error pattern caused by faults of cardinality t. Therefore, one needs to

consider only fault patterns of cardinality t in order to determine the size of the largest

error pattern.) Now the system is designed to have an error detectability of 5.

The lower and upper bounds for the number of checks required were calculated in

terms of g, h, and s. In the following subsection we give some sample bounds derived in

[50] and [51].

5.2.1. A few sample bounds

As examples, we provide the bounds derived for 2--error detectability and

3-error detectability. It was shown in [51] that at least 2n/(g+l) checks are necessary to

detect 2 errors. Rozenkrantz and Ravi showed that ['2n/(g+l_ checks axe sufficient for

detecting 2 errors. For 3-error detection also ['2n/(g+l_ is a trivial lower bound. The

upper bound for this case derived in [50] was qn/q+g-1 where q = r(3g+l)/_. This

bound was later improved in [51] to a higher value ['(2n -Ln/gJ)/gl + 1.

83

5.2.2. Limitations

With the modern VLSI technology, individual nodes of multiprocessor systems are

capable of having high computing powers. Every processor in the system may be com-

puting a large volume of data which in turn means that the size of the error patterns pro-

duced by a faulty processor may be large. Since the designs are done for meeting the

error detectability criterion, this will result in large complexities.

The methodology is efficient only when most of the t-faults arc producing error pat-

terns of cardinality s. On the contrary, if only a small number of fault patterns produce

error patterns of cardinality s, the design procedure will be using larger number of checks

unnecessarily. The approach lacks flexibility with respect to varying amount of compu-

tation performed by a processor. For example, if a system were designed for an error

detectability of s and later one of the processors is assigned a bigger load of computing

more data elements, in this method, the whole system has to be redesigned for the new

error detectability (to maintain the original value of the fault detectability). Unfor-

tunately, both these scenarios exist in real life. It was reported in [48] that in the AOSP

architecture, every computing node in the structure can support a wide variety of signal

processing computations and often, the amount of computation performed by various

nodes is not the same. If we incorporate system level diagnosis in this case, inefficient

designs will result as mentioned in the beginning of the paragraph.

In [50] and [51] the problem of minimizing the number of (g, h) checks was

transformed into a problem of constructing a bipartite graph where the number of output

nodes is minimized subject to the constraints of t-fault detection. Instead of using (g, h)

84

checks, checks of type Q_,, 1) were used where g"--kg/hJ. After constructing a graph sub-

ject to the modified constraints, groups of h output nodes arc merged together. The new

merged graph satisfies the constraints of (g, h) checks. The limitation of this approach is

that even though the merged graph preserves the fault detectability of the original graph,

the locatability may not be preserved. In other words the design cannot handle detecta-

bility and Iocatabilityconstraintssimultaneously.

5.3. A New Approach for the Design of FTMP Systems
.It

In thisthesis,we propose a straightforwarddesign procedure which needs a smaller

number of checks than the previous techniques especiallywhen the computation is

nonuniformly distributedamong the processing nodes. In our approach the system is

designed directlyfor meeting the faultconstraintsratherthan errorconstraints.Also the

methodology can handle both detectabilityand locatabilityissuessimultaneously. The

use of the matrix-based model allows the use of simple vectorspace techniques to iden-

tifyredundant checks. The flexibilityinvolved in handling varying the amounts of com-

putationsperformed by individualprocessornodes isanotheradvantage of our approach.

5.3.1. Problem definition

Using the matrix-based model parameters, we define the design problem as follows:

Given the PD matrix, find a DC matrix so that the corresponding PC matrix has the

requiredfaultdiagnosing capabilities.

Since PC = PD*DC, the design involves finding two variables (actuallytwo

matrices)from a singleequation. Therefore,the solutionisnot unique. The selectionof

a particularsolutionshould optimize the number of checks required,and the number of

85

4

errors detectable and correctable by each check (assuming that the cost of each check

increases proportionally to the number of errors it can detect and correct). Our approach

to the problem consists of the following steps.

(1) Design a DC matrix for PD - I,, and h = 1, such that the system has

t-fault detectability and l-fault locatability. Here I,,, is the identity matrix of order m,

where m is the number of processors in the system to be designed. We call this sys-

tem the unit system of the actual fault-tolerant system to be designed.

(2) Modify the DC matrix of the unit system according to the given PD matrix in order

to obtain the DC matrix of the actual system.

In the unit system, since the PD matrix is the unit matrix, every processor is produc-

ing only one data clement. Therefore, the cardinality of the fault patterns will be the

same as the cardinality of the resulting error patterns. As mentioned before, in such a

situation, the techniques proposed in [50, 51] are efficient and can be used for the design

of the unit system. Designs are already available for various values of fault detectabili-

ties and locatabilities. These designs of the unit systems can be used as a template. Now

the actual design consists of modifying these template designs to obtain the actual sys-

tem.

DEFINITION 5.1. The Product System of a given non-fault-tolerant system and the

corresponding fault-tolerant unit system is defined as the system obtained by connecting

every data element affected by processor Pi in the non-fault-tolerant system to every

check element in the unit system which checks the output of processor Pi. []

86

The construction of the product system is illusu'ated in the following example.

EXAMPLE 5.1. Let us consider a mnltiprocessor system with four processors. The

first processor produces 4 data elements, the second one 2, and the third and the fourth

processor produce only one data element each. A unit system is designed for

3--fault detectability and 1-fault locatability.

in Figure 5.1.

Consu'uction of the product system is given

[]

THEOREM &l. If the unit system is t-fault detectable and l-fault locatable, for t and

l > 0, then the product system is t-fault detectable and l-fault locatable if and only if

h > max [hUm (e_)].

Here h is the error detectability of the checks in the product system and num (Pi) is the

number of data elements affected by processor Pi.

PROOF: Proof for the necessary condition, (by contradiction): Let

h < max [num (Pi)], and the product system be t-fault detectable and l-fault locatable. Let

processor Pj be such that hum (Pj)= max Inure (Pi)], where the maximum is computed for

i = 1, 2, 3 m. If Pj fails in such a way that all the data elements produced by Pj

become erroneous, then all the checks done on Pj in the product system will become

invalid. Therefore, such a fault in Pj will not be detected and the system is

O-fault detectable which is a contradiction.

Proof for the sufficiency condition: Since the unit system is designed for h = 1, for

any fault pattern of cardinality < t, there exists at least one check in the unit system which

checks only one processor in that group of processors which are faulty. (In [31] this is

referred to as 1-neighbor intersection property.) In the product system also, since

87

dl

PI_ d2
d3

d4

P3 o d6

P4 o------- d7

(a)

Non-fault-tolerant

System

Pl _ cl

I>2 c2

P3

P4 o _/'/'_ c3

Co)

Unit System

P1

P2

P3

P4

cl

c2

c3

(c)

Product System

Figure 5.1. Construction of a product system.

h > max [num (Pi)], this check will fail and hence the system has the same detectability

and locatability as the unit system. Locatability of the product system can be argued in a

similar fashion.

88

5.3.2. Construction of the actual system

Construction of the actual fault-tolerant system with given (g, h) checks is done by

splitting each check in the product system into one or more checks such that every check

in the resulting system has at most h data elements from each processor checked by those

checks. Now the new system has the same detectability and locatability as the product

system. This is because, whenever a check in the product system fails, at least one of the

checks formed by splitting that check node will fail in the actual system. Actually, the

detectability and locatability of the new system may be higher than the product system.

However, we are interestedonly in the factthatthe detectabilityand locatabilityof the

final system arc at least equal to that of the product system.

It should be noted that in the procedure described above, instead of combining h

checks in the unit system to form a system having checks of errordetectabilityh, we

attachh data elements from every processorto thatcheck. This approach willpreserve

the faultdetectabilityand Iocatabilityof the unitsystem even afterconverting itintothe

finalsystem. However, when most of the processors are producing only <h data ele-

ments, the design may not be efficient.In those cases,the unit system itselfmay be

designed by assuming thatthe checks have errordetectabilityh. Correspondingly, while

constructingthe finalsystem from the product system, the checks should be splitin such

a way thatevery check receivesatmost one data element from the processors which arc

being checked by thatcheck.

Another point of interestis the assignment of checks to the processors,that is,

which processor performs which check. Once the assignment is decided for the

89

unit system the same assignment should be followed in the product system also. When

checks in the product system (parent checks) arc split into component checks, all the

component checks are assigned to the same processor which was hosting the parent check

in the product system.

In the following, we present the design procedure as an algorithm, in terms of the

matrix-based model parameters. The resulting DC matrix (and the corresponding PC

matrix) has the required fault diagnosing capabilities. The DC matrix can be further

simplified by deleting some of the redundant columns as follows.

DEFINITION 5.2. Column Ci (i.e., check Ci) is said to be covered by one or more

columns ff and only if Ci can be written as a linear combination (with coefficient of mul-

tiplicationequal to 1)of those columns.

DESIGN ALGORITHM

(1) Construct a DC matrix for the unit system (we call it the unit DC matrix), so that the

unit system is t-fault detectable and l-fault locatable.

(2) The DC matrix for the product system (called the product DC matrix) is constructed

by expanding the columns of the unit DC matrix vertically. The row corresponding

to processor Pi in the unit DC matrix is replicated hum (Pi) times.

(3) The DC matrix of the product system is partitioned into blocks of rows, such that
the i 'h block contains data elements produced by processor Pi.

(4) Each column in the product DC matrix is split into a minimum numt,*_r of columns

so that every column has at most h number of l's in every block.

90

LEMMA 5.1. If Ci is covered by Cjl, Cjz Cjj,, then Ci is a redundant check and

can be deleted.

PROOF: Since Ci can be obtained as a linear combination of Cil, Ci2 Cik, when-

ever Ci fails, at least one of the checks among Cii, Ci2, ... Cik will fail. Therefore, if the

system has checks Cii, Ci2 Cik, then check Ci is redundant and hence can be deleted.
[]

COROLLARY 5.1. Every column is covered by another identical column, if such a

column exists.

Once the DC matrix is determined using the design algorithm, the DC matrix is

further simplified by deleting all columns which am covered by some other columns.

The procedure for modifying the product system to obtain the actual system is illustrated

in the followingexample.

EXAMPLE 5.2.We consider the same multiprocessorsystem thatwe introduced in

the previous example. We am supposed todesign a fault-tolerantsystem consistingof all

these processors such thatthe system willbe 3-faultdetectableand I-faultlocatable.In

example 5.1,we have already seen how to constructthe product system. The restof the

algorithmicprocedure isshown in Figure 5.2. The graphicalrepresentationsof the sys-

tems am shown along with theirmatrixrepresentations.Itcan be observed in Figure 5.2

(b) thatthe DC matrix has two identicalcolumns corresponding to checks C12 and C_.

Either one of those checks can be deleted from the system so thatthe finalsystem has

only 4 checks. []

91

PI

1:'2

P3 o

P4

cl

c2

c3

i a

II0

II0

II0

ibb-

I00

011

001

Block 1

Block 2

Block 3

Block 4

(a)

Productsystemand the correspondingDC matrix

PI

P2

I>3o

P4o

ell

c12

c21

) c22

c3

-I 0

I 0

0 1

I 0,
!

!

I 0,

I

I 0 0

I 0 0

0 1 0

00 0,
' 00 0,

.... [..... ..I.

' 1 0'00 O_

b-'0", o o ,-7
I I

i

(b)

Fault-tolerant System for h - 2 and its DC matrix

Figure 5.2. Design of the final system from the product system.

92

5.3.3. Comparison with previous schemes

In order to make a comparison between the newly proposed scheme and the existing

ones, we consider the following example. The comparison is done with respect to the

number of checks required in the design.

EXAMPLE 5.3. Suppose a system involving 500 processors has to be designed for

3-fault detectability and 1-fault locatabUity. The checks available arc of type (5,1) (i.e., g

ffi 5, and h - 1). It is also known that I0 of those 500 processors produce 2 data elements

each.

Number of checks required as per the bounds given in [50] : 408

Number of checks required as per the bounds given in [51] : 363

Number of checks required for our scheme : 200 [21

5.4. Conclusions

A systematic and straightforward design methodology is proposed for the design of

FTMS where individual processors may produce multiple data elements. Our approach

is to transform the non-fault-tolerant system directly to satisfy the fault detectability and

locatability constraints to obtain a fault-tolerant system. The new scheme is more

efficient than the previous schemes with respect to the number of checks used in the

overall system. Examples are provided for the illustration of the design methodology and

for the comparison of various schemes.

93

5.4.1. An alternative approach

For completeness of the thesis we briefly describe an alternative approach for

designing a fault-tolerant system by mapping a fault-tolerant algorithm on a suitable mul-

tiprocessor architecture which wiU minimize the overhead [52]. To that end, a depen-

dence graph-based approach has been suggested by Virmakota and Jha in [52].

In the first stage of the design process, a particular encoding scheme is selected to

meet the fault tolerance specifications. In the second stage; an optimal architecture to

implement the scheme is chosen using dependence graphs.

Dependence graphs are graph-theoretic representations of algorithms [53]. After

the first stage of the design, the encoded algorithm is represented as a dependence graph.

This graph is then projected in several directions to obtain different realizations of archi-

tectures, among which the one with the optimal features is chosen. It was demonstrated

that not allarchitecturesare suitablefor a particularABFT scheme. In thisstudy the

authors claim that theirapproach is architectureindependent. However, most of the

cost-effective fault tolerance algorithms known until now are architecture specific.

Therefore, the selection of a particular algorithm dictates the selection of the architecture

alSO.

CHAPTER 6.

HIERARCHICAL DESIGN AND ANALYSIS

94

6.1. Introduction

The complexity of the detectability algorithm, based on the matrix model, is linear

in the number of data elements, whereas the complexity of the locatability algorithm is

quadratic in the number of data elements in the system. Even though these complexities

are less than the complexities of previous algorithms [23], the computation may require a

large amount of time and memory when the system has a large number of processors pro-

ducing huge volumes of data. This motivates the development of a hierarchical approach

to analysis which will reduce the complexity of the algorithms to a polynomial in the log-

arithm of the number of processors in the system.

A natural way to build large systems is to first build small units and then to con-

struct bigger units from the small units in a hierarchical fashion. This principle has been

followed in the design of most of the existing large multiprocessor systems. That is, a

small unit is replicated many times with a systematic method of intercormection. For

example, a two-dimensional mesh connected processor array may be considered as multi-

ple replications of a linear array with corresponding elements of the copies connected in

a linear fashion. It has been suggested that in such complex multicomputer structures,

fault tolerance should also be handled in a hierarchical fashion [1]. However, even when

95

the error detection, fault location and recovery are performed in a hierarchical fashion,

analysis of these systems has conventionally been done without exploiting the hierarchy

[23,46, 18,51].

In this chapter, we develop techniques to analyze fault-tolerant multiprocessor sys-

tems in a hierarchical fashion. The fault tolerance of the system at different levels of the

hierarchy is determined separately and the overall fault tolerance capabilities are derived

from those values. In order to exemplify such an approach, we first describe a type of

hierarchy one may follow in order to build a large fault-tolerant multiprocessor system.

Then, we develop an analytic technique that is based on a hierarchical description of the

system using the matrix model mentioned earlier.

In the proposed hierarchical design, large fault-tolerant systems arc constructed

from smaller units (basic units) of known fault tolerance capabilities. Basic units (proces-

sors as well as checks) arc replicated several times at the next level of the hierarchy and

new checks arc introduced. This procedure is repeated recursively through various levels

of hierarchy. The ability to analyze different checks at different levels of hierarchy

greatly simplifies the overall analysis of large systems, as we shall see in Section 6.3.

We derive the relationship between the fault detectability (locatahility) of the basic unit

and the fault detectability (locatability) of systems hierarchically derived from the basic

unit. In order to make the development of the theory simple, we first assume that the

processors in the fault-tolerant systems under consideration produce only one data ele-

ment each. However, the techniques developed in Chapter 5 may be used to extend the

design to systems where individual processors produce multiple numbers of data ele-

merits.

96

Theorganizationof the chapter is as follows. In Section 6.2 we develop the concept

of independent and orthogonal checks. Section 6.3 deals with the hierarchical design and

analysis of fault-tolerant systems. Our conclusions are stated in Section 6.4.

6.2. Independent and Orthogonal Checks

In this section, we develop certain properties of (g,h) checks which are described in

Chapter 2. These properties arc eventually used in the hierarchical analysis of systems.

DEFINrrlON 6.1. The Domain of a set of check S (denoted as D (S)) is defined as the

set of processors that are checked by these checks.

D (S) ffi {Pi I PCtj _t ¢_ ,for all cj _ S}

where PC represents the PC matrix and • is the null set. []

DEFINITION 6.2. Sets of checks St and 52 are said to be independent ff and only if

D($t)("#(S2) = O. []

In Figure 6.1, A and B are the domains of sets of checks St and $2, respectively. Since

A f'3B - 0, $1 andS2 are independent checks.

DEFINrrloN 6.3. det(A)Is is defined as the fault detectability of system A when it is

checked by S. []

DEFINITION 6.4. loc(A)ls is defined as the fault locatability of system A when it is

checked by S. []

LEMMA 6.1. If $1 and $2 are two independent sets of checks and A 1 and A2 are

their respective domains, then

det(A l l,.)A2)l stk.)s 2 = rrfin [det(A l)l sl , det(A 2) lsz].

97

$2

Figure6.1. Independent checks.

PROOF: Follows from the definition of independence. []

LEMMA 6.2. If $1 andS2 have the same domain A, then

det(A)ls_Us 2 _ max [det(A)ls_, det(A)lsz].

PROOF: Since S x and $2 are applied on the same set of processors, a fault wiU be

detected ff either St or 52 detects it. Therefore, such an arrangement should be able to

detect as many faults as either S t or S2, whichever is larger. []

Similar results apply to the locatability of systems too. Now we find an upper limit

for det(A)ls:L)s2 and/oc(A)lstL,)s2. Intuitively, the upper limit is going to be dependent

on the domains of individual checks in S 1 and $2.

DEFINITION 6.5. Sets of checks S t and $2 are said to be orthogonal to each other if:

(1) any check in S1 has at most one processor in common with any check in $2; (2) for

every check in S x there is at least one check in $2 which shares a processor with the

check in S 1. []

98

EXAMPLE 6.1. The set of the row checksums and the set of the column checksums

applied to a mesh-connected processor array form two orthogonal sets of checks. []

LEMMA 6.3. If S1 and $2 arc two sets of checks having the same domain A, then

det(A) Istk._a i8 maxitnlzed when St andS2 arc orthogonal to each other.

PROOF: Fault detectabilityof the system willbe a maximum ifindividualchecks

inS i share a minimum number of processorswith the checks in $2. However, since itis

necessary thatevery processorinA ischecked by at leastone check inSt and by at least

one check in $2, the minimum number of processors thatthey can share isone. There-

fore,for the detectabilityto be a maximum, itisnecessarythatthe checks are orthogonal

to each other. []

THEOREM 6.1. If det(A)l$1 -- tt, det(A)ls 2 = t2, loc(A)ls I = It, and

/oc(A)ls2 = 12, where tt, t2_l, then

det(A)lstk._s2 < (tt + 1) (t2 + 1)

loc(A)lsttos2 < (/t + 1) (/2 + 1).

PROOF: By the definition of detectability, the minimum size of a fault pattern

which cannot be detected by St is (tt + 1). Similarly, the minimum size of the fault pat-

tern which cannot be detected by $2 is (tt + 1). We want to maximize the size of the

smallest fault pattern which cannot be detected by checks in both St and $2. From the

previous lemma, the detectability is maximized when the checks are orthogonai. In this

configuration one can observe that the maximum of the size of the smallest undetectable

fault is equal to the product of the size of the smallest fault pattern undetectable by St

and the size of the smallest fault pattern undetectable by $2. That is,

99

v

det(A)lslk3s2 < (tl + 1) (t2 + 1).

With a similar logic we arrive at the corresponding result for the locatability of the

system. []

In the following section, we show that this is a reachable bound. We _sci'ibe the

construction of a fault-tolerant system which achieves the maximum fault detectability

and locatability.

6.3. The Hierarchical Approach

Our main objective is to show how checks cain be treated at different levels of

hierarchy during the analysis of a system. To that end we first describe a hierarchical

approach for the design of fault-tolerant multiprocessor systems. One may seek various

kinds of hierarchies to design a system. However, the particular hierarchy we suggest is

motivated by two factors: (1) most of the existing multiprocessor systems are built using

this type of hierarchy; for example, in the binary hypercube, an n--dimensional cube is

constructed by connecting the corresponding processors in two n-1 cubes', (2) this will

maximize the fault detectability and locatability of the overall system for a given fault

detectability and loeatability of the basic unit [54].

Before going into the details of the type of hierarchy we use in the design and

analysis of systems, we will establish some properties related to the fault

detectability/locatability of fault-tolerant systems and the error detectability of checks

used in those systems. In this section, we assume that every processor produces only one

data element and that the fault in a check-evaluating processor will not invalidate the

checks performed by that processor. The presence of a fault is manifested as a single

lOO
,J

error. In other words, there is a one-to-one correspondence between faults and errors.

Therefore,inensuing discussions,we willuse the termsfauRs and errorsintcrchangcably.

DEFINITION 6.6.A fault-tolerantmultiprocessorsystem issaidto be bounded ifand

only fft< N where tisthefaultdetectabilityof the system and N isthe number of proces-

sorsinthe system. [Z]

The concept of boundedness is relevant only ff the checking operations do not

become invalideven ifthe corresponding check processors fail.This may be achieved

eitherby employing an externalprocessor for the checking operationor by building the

checking unitsinsidethe check processorsto be totallyself--checking.Ifthisconditionis

not satisfied,trivially,the faultdetectabilityof a system cannot exceed the number of

check evaluatingprocessorsin the system and hence the system isalways bounded.

EXAMPLE 6.2.Consider a mesh connected processor array in which processors are

checked by column checks and row checks as shown in the Figure 6.2. Let the error

detectabilityof the column/row checks be h=2. Using the algorithms given in the

preceding sectionwe findthatthe arrayin Figure 6.2 (a)has a faultdetectability= 4, and

the one in Figure 6.2 (b) has a fault detectability= 8. Therefore, system (a) is

not bounded whereas system (b) is bounded. [_

DEHNITION 6.7. A check is said to be bounded if it checks more than h data ele-

ments. []

LEMMA 6.4.A sufficientconditionfor a system to be bounded isthatallthe chccks

performed in the system am bounded.

101

Figure 6.2. Examples for unbounded and bounded systems.

PROOF: Proof by contradiction: Suppose all the checks are bounded and the system

is not bounded, which implies N = t. However, when all the processors are faulty, every

check will be checking greater than h errors, and hence all of them will produce invalid

results. Therefore, we cannot detect the simultaneous presence of N faults which is a

contradiction to the hypothesis. D

It may be noticed that in Example 6.2, the system represented in Figure 6.2 (b) has

all its checks bounded and hence the system is bounded as we had found out by other

means.

LEMMA 6.5. If si, for i - 1,2 , are subsystems of a given system S such that s, _ S,

then S is bounded if and only if at least one subsystem sj is bounded; then the fault

detectability/locatabilit_ of S is less than or equal to the fault detectability/locatability of

sj.

PROOF: The proof for the necessary condition is trivial, since by definition of s_ it

could be the system S itself.

102

Proof of the sufficiency condition: Let sj be a bounded subsystem. Then, irrespec-

tive of the rest of the system, the subsystem sj will have a detectability, t < Isjl where

I sj I denotes the number of processors in the subsystem. However, if the rest of the sys-

tem has a detectability strictly less than t, then the overall detectability (T) of the system

will be also strictly less than t. Therefore, 7"< t < IS I and hence the proof. []

The motivation for Lemma 6.5 is to point out that if we add more processors to an

already bounded system (note that there are no new checks added to the existing system

during the expansion), the fault detectability of the overall system does not increase. We

make use of this inference in the formulation of Theorem 6.2.

6.3.1. Construction of a hierarchical system

We now outlinethe procedure to build a hierarchicalsystem from a basic unit.Let

8 be the given basic system with a known faultdetectabilityand Iocatability.Firstwe

replicatecopies of B (replicationinvolvesreplicationof the checks also).Let P i,P 2.....

P, be the processors in B which are checked only by bounded checks. As a second step

in the hierarchicalexpansion of the system, r new checks are introduced such thatthc

firstcheck performs the evaluationof processorP I in B and allitsimage processors in

other copies of 8, the second check evaluatesprocessor P2 and allitscopies,and so on.

The procedure is illustratedin Figme 6.3. We do not have to provide a check at the

higher levelsfor those processors which are checked by at leastone unbounded check

because an unbounded check willalways failifthe processor(s)checked by thatcheck is

(are)faultyregardlessof thepresence of any otherfault.

103

CH

B2 B1 B
Bk-1 • • •

...... !!I -
CI CI CI CI

Figure 6.3.

CI -Internalcheck

CH -Check inthehigherlevel

Hierarchical expansion of a basic system.

In the figure, 81,82 8k-t are copies of the basic system B. CI represents the set

of checks which are internal to every copy of B and CH represents the set of checks in the

next higher level. In the following discussion, this kind of a construction will be referred

to as k-fold expansion of B in the next level of hierarchy. Following a similar procedure,

the expanded system may further be extended in the next higher level of the hierarchy.

It may be noted that the checks introduced at different levels of hierarchy may be of

different types having different values of error detectability. In order to simplify the

development of our theory, we assume that all the checks in the system are similar, and

have the same error detectability. However, the value of g may be different. An impor-

tant restriction we impose while expanding the system is that there is no data migration

allowed between processors in different copies of the basic unit. In other words, faults in

one copy of the basic unit will not affect other copies.

104

Now we derive the relationships between the fault detectability (locatability) of a

basic unit and a system obtained by hierarchically expanding the basic unit.

THEOREM 6.2. If t and I are the fault detectability and locatability of a bounded

basic system B, and S is a k-fold (k _;g) d-level hierarchical expansion of B, then the fault

detectability (Td) and locatability (La) of S are

f IB I .k d-t for 1 < k < hTd = (t+l)(h+l) d-t _ 1 for k > h

La -2d-t(l+l)-I fork>l

where IB I represents the number of processors in the basic system.

PROOF: We prove the theorem by induction on the number of levels, d.

Proof for the detectability part:

Case l. l <k<h

Basis: d - 2

Consider the lowest level and the next higher level of hierarchy (i.e., level 2). When

k < h, none of the checks in level 2 will become invalid for any combination of faults in B

and the copies of B, since none of these cheeks are evaluating more than h data elements.

On the other hand, at least one of these checks will fail for any combination of faults in

the system. Therefore, the fault detectability is equal to the number of processors in the

system which is equal to IB I . k.

Inductive Step:

Let the hypothesis be true for the number of levels up to d - 1. Then

105

Td_IffiIB Ikd-2.

Now considering Sa-1 as the basic unit and applying the basis case, we arrive at

Ta -- ISd-l l.kffi(IB I-kd-2)-k = IB I.k a-l.

Note that in this case the resulting system is not bounded.

Case 2. k>h.

Basis: d=2

Here, also, we first consider the basic unit B and its next level of hierarchy. We now

prove that there exists at least one fault pattern of cardinality (t+l)(h+l) which will not be

detected in the 2-level system. Let there be identical fault patterns of cardinality (t+l)

occurring in (h+l) copies of B. These faults will not be detected by checks inside the

copies of B, since the fault detectability of B is equal to t. Every check at the second level

is either checking processors which are not faulty or (h+l) processors which are faulty.

In either case, the checks may produce a "pass" output (since the error detectability of the

checks is equal to h, faults of cardinality (h+l) may invalidate the checks). This means

that the faults will not be detected in this level, also.

Now we prove that every fault pattern of cardinality less than or equal to

(t+l)(h+l) - 1 will be detected. In order for such a fault pattern not to be detectable in the

lower level, it is necessary that the copies of B having faulty processors should have more

than t faults present in them. The fault is not detectable in the higher level only if the

checks evaluating the faulty processors check more than h errors. If we distribute

(t+l)(h+l)- 1 faults into (h+l) copies such that every basic unit has at least (t+l) faults,

by the pigeon hole principle [55], at least one of the subunits will have < t faults, and

hence the fault is detectable in that copy. Conversely, if every subunit has __.(t+l) faults,

106

at least one check in the next level will be checking < h faults, and will detect those

faults.

Therefore, the fault detectability of a 2-level expansion of B is (t+l)(h+l) - 1.

Inductive Step:

Let the hypothesis be true for the number of levels up to d-1. Then

Td-1 = (t+l)(h+l) d-2 - 1.

Now applying the basis case, we have

Td - (Td-t + 1)(h+l)- 1 - (t+l)(h+l) d-1 - 1.

Proof for the locatability part:

Basis: d-2

Here, also, we first consider the lowest level of hierarchy and the next level. First, we

prove that there exists a fault pattern of cardinality (21 +2) which will not be correctly

located in a 2-level system. Consider two identical fault patterns of size (l + 1) occurring

on two copies of B. Since the locatability of B is l, these fault patterns will not be located

correctly within the copies of B (that is, the internal checks cannot locate the faults

correctly). Even if all the checks in the next level detect faults, it may not be possible to

locate the faults among the copies of B.

Now we prove that any fault pattern of cardinality < 2l + 1 will always be correctly

located in a 2-level system. Consider a fault pattern of size (2l + 1). If we distribute the

individual faults in this pattern among various copies of B, by the pigeon hole principle,

at most one copy of B will have >_(l + 1) faults. Let us denote such a copy as Bi. Now the

total number of individual faults distributed among all the other copies will be < l.

107

Therefore, any of those copies will have a fault pattern of cardinality < I and will be

correctly located by checks within the copy. Now let us consider locating the fault

within Bi. The _um size of a fault which may occur in Bi is 21 + I in which case

none of the other copies will have any fault in them. Since t >_(21 + I) [18], the fault in Bi

will be detected by checks within Bi. The checks in the next level are checking only one

fault each, and therefore, they can locate the faults within Bi. Hence the fault is Iocat-

able.

Now we consider a more general case in which the number of faults in gi is (I + r)

where r > I. The rest of the copies ofB wiU have a total of(/-r + I) faults. Regardless of

the way these faults are distributed among these copies, there wiU be at least (2r- I)

number of faults in Bi such that there are no faults in any other copy of B in the

corresponding positions (we refer to these faults as unobscured faults). These (2r- I)

faults in Bi can be located by checks in the higher level. The remaining (I - r + I) faults

can be uniquely located with the help of the syndrome generated by the internal checks

of Bi since (I - r + I) < I. Therefore, any fault pattern of cardinality < (21 + I) can be

uniquely located in a 2-level system.

Inductive Step:

Let the hypothesis be true for the number of levels up to d-1. Then

L_-t = 2a-2(I +1) - 1.

Now applying the basis case, we arrive at

La = 2La-t +1 =2a-l(l+l) - 1.

108

It may be noted that the fault detectability of a system increases as the number of

copies (k) in the same level increases, until k reaches a value equal to h. For k > h, the

system is bounded in that level and the fault detectability attains a constant value as

described in the beginning of this section. Locatabillty, however, is independent of the

value of k. This is because of the generality of the definition of checks where we assume

that an individual check can locate no faults, even though it can detect multiple faults.

In the following, we present two examples to illustrate the hierarchical construction

of fault-tolerant systems.

EXAMPLE 6.3. As a first example, we consider a Linear processor array as shown in

Figure 6.4 (a). In the array, all the processors are evaluated by a check with error detec-

tability, h - 1. Fault detectability of such a linear array is equal to 1 (i.e., t=l) and fault

locatability is equal to 0 (1=0). Now we expand the system hierarchicaUy to form a two

dimensional mesh connected processor array as shown in Figure 6.4 (b). The newly

added checks in the new level are shown by dotted lines.

By the previous theorem, the fault detectability of the mesh connected processor

array is

T2 - (t+l)(h +1) a-I - 1 = 2 x 2 - 1 = 3.

The fault locatabilityL is

L2 =2d-l(l+1)--I =2X(0+I)--1 =I.

These values conform to the valuesobtained from the analysisusing the nonhierarchical

algorithmspresented inSection 6.2.

109

[2

[]

[3

[-I

(a)

Figure 6.4.

Co)

Hierarchical expansion of a linear array.

is associated with six internal checks.

as shown in the figure by dotted lines.

bilky of this system are 7 and 3, respectively.

EXAMPLE 6.4.As a second example, we consider the hierarchicalexpansion of the

Advanced Onboard SignalProcessor (AOSP) architecture[48]. From the analysisof this

system we findthatthe system is3-faultdetectableand singlefaultlocatable.

Now letus consider a 4-fold2-1evelexpansion of AOSP (i.e.,using AOSP as the

basic system). The expansion scheme isillustratedin Figure 6.5. Every copy of AOSP

Nine additionalchecks are added in the next level

By Theorem 6.2,the faultdetectabilityand locata-

[]

6.3.2. The number of checks in the hierarchical system

In this section we compute the number of checks required in the hierarchical con-

struction of a system in terms of the number of checks in the basic unit and the number of

levels in the system. Here we assume that all the checks in the system (including the

110

m

AOSP

.........

AOSP AOSP AOSP

Figure 6.5. Hierarchical expansion of AOSP architecture.

checks in Cr) arc boundccL

THEOREM 6.3. The number of checks used in a hierarchical system built by a

k-fold, d-level expansion of a basic unit is

Ha ffi r kd-l + n (d-1) k d-2.

where r is the number of checks in the basic unit and n is the number of processors in the

basic unit.

PROOF: By construction, the number of checks in a hierarchical system satisfies

the re,cursive equation

H d ffi kHd_ 1 ÷Nd_ 1

where Nd-l is the number of checks in the (d-D--level system. Since Nd = n kd-l ,

H a ffi kHd_ 1 +nk d-2.

111

Solving the recursive equation with boundary conditions, H1 = r and H 2 = rk + n yields

that

lid = r k d-I + n (d - 1) k d-2. []

However, we observe that it is not necessary to have all the Ha checks. The obser-

vation is elaborated in the following lemmas.

LEMMA 6.6. There exists a 2-level system with detectability T2 which requires only

H2 - TI checks.

PROOV: We shall prove that even if we remove any T1 (note that T1 = t) checks

from the set of checks in the second level, the detectability of a 2-level sy.stem remains

the same as T2. Any detectable fault in the system should be detected either at the lower

level (by ¢ls) or in the higher level. If the fault is detected in the lower level, removal of

checks from the higher level is not going to affect the detectability of the fault. There-

fore, we need to consider faults which axe detectable only in the higher level. If sqch a

fault occurs, some copies of the basic unit will have > (t + 1) number of faults whereas the

rest of the copies will not have any faults at all. However, from Theorem 6.2 we know

that there axe at most h copies of the basic unit having > (t + 1) number of faults. In Fig-

ure 6.6, the large ellipses represent copies of the basic unit which have > (t + 1) faults.

The shaded portionsrepresentTt processorsin every basic unitwhich are not checked in

the next higher level.The corresponding checks which are removed from the system are

denoted as set U. Since the sizeof the faultpatternspresentin the copies is_>(t+ I),at

leastone faultyprocessor in thatcopy willbe checked by a check Ch in the set(CH - U).

Since the number of such faultschecked by every check in (CH- U) is at most h, the

112

fault will be detected. Thus, the detectability is unaffected despite the removal of T1

checks from the original hierarchical system. O

A similar result exists related to the locatability of a system. However, a distinction

has to be made between the problems of detectability and Iocatability here: in the case of

detectability, we need help from the higher-level checks only when the fault is undetect-

able in all the copies of the basic unit whereas, in the case of locatability we need to use

the higher-level checks whenever at least one copy of the basic unit has a fault pattern

that is unlocatable with the help of the internal checks. Intuitively, we cannot remove as

many checks in the case of locatability as in the case of detectability and still preserve

the overall locatahility of the system.

LEMMA 6.7. There exists a 2-level system with locatability L2 which requires only

H2 - 1 checks.

PROOF: From Theorem 6.2, we know that there is at most one copy of the basic

unit which has > (1 + 1) number of faults, and we know that the purpose of the higher

level checks is to locate correctly the unobscured faults. Therefore, we must ensure that

the unobscured faults should not lie entirely inside the shaded region (that is, the set of

U

Figure 6.6. Unnecessary checks in the second level of hierarchy.

113

processors which had been checked by the checks in U). Since the minimum size of the

set of unobscured faults is one, the maximum number of checks we can remove from CH,

without altering the locatability of the system, is one.
O

Now we generalize these results for a d-level system. Even though the saving in

terms of the number of checks is small for a 2-level system, it will be shown that the

overall saving may be significant for larger values of d.

THEOREM 6.4. There exists a k-fold, d-level system with detectability Ta using Ha -

detu d number of checks, where

i=d-l(kd_ i ifd-l(kd-IdCtud - 1 [((t + 1) _ - 1) (h + 1) i-1) - _ - 1)].
(k - 1) i-z i=1

PROOF: From Lcmma 6.6, we know that in a 2-level system, TI number of checks

arc unnecessary. In the hierarchical expansion, the second level systems will be con-

sidered as the new basic units and are replicated in the third level. Here, the overall sav-

ing will be Tl k + T2. If we recursively calculate the number of checks saved, we arrive

at

dCtud _.a-1 j..d-_-t- T_,Ti(Z kJ)"
i=t j.o

Now substituting the value for Ti as (t+l)(h+l) i-t, we have

I i=d-l(kd..i i=d-l(kd-I
dCtud - (k- I) [((t+ 1) T_ - 1)(h+ 1)i-I)- _E_ - I)].i==l ill []

THEOREM 6.5. There exists a k-fold, d-level system with detectability Ta and loca-

tability Ld using Ha " l°Cua number of checks, where

IOCud ifd-I)_i-2= Z (7_,tJ).
isl jffiO

114

PROOF: The proof is very similar to the previous theorem except that in every

level we save only one check during expansion. In the second level we save one check,

in the third level (k + 1), and so on. In general the number of checks saved in level i is

j-/-2
equal to _ kj. Summing all those values up to level d,

j-o

i,._-t j-/-2

6.3.3. Hierarchical analysis of systems

i-I j_O []

The hierarchical principles derived in the preceding section can be translated into

the domain of the fundamental matrices which constitute the matrix model. Replication

of the basic unit is equivalent to a repetition of the PC matrix of the basic unit along the

diagonal. The addition of checks in the new dimension is tantamount to adding identity

matrices (one identity matrix per diagonal submatrix) to the expanded PC matrix. The

matrix equivalent of the hierarchical expansion of a system is shown in Figure 6.7. Here

PC represents the PC matrix of the basic unit and I is an identity matrix.

In order to analyze a given system hierarchically, we first arrange the rows and

columns of the PC matrix in such a way that the final matrix is in the form shown in Fig-

ure 6.7. Now, the detectability and locatability of the basic PC matrix can be computed,

from which the detectability and locatability of the entire system can be derived using the

results in Theorem 6.2. Note that, typically, the size of the basic unit is considerably

smaller than the size of the entire system.

However, in certain designs, it may be the case that the diagonal PC matrices will

have the same number of rows, but a different number of columns, that is, during

115

wm

I'----- "I I" - --'I

l I I I

,PC, ' I '
I I I I

t.---+----1,' 0 I'-'"4,,
'PC' , I '
I ! I I

L---+----I I-----I
I I I I

I I ! I I

I PC i i I

'----+--- +'" "1
I I I' PC' I '
I I I

I..---L_-- J

Figure 6.7. The PC matrix of a hierarchical system.

replication of the basic unit, all the internal checks (CO were not replicated. In this case

the fault detectability and the locatability of the images of the basic unit may be different.

In such a case we cannot compute the actual values of fault detectability and locatability

of the hierarchical system. However, we can calculate a lower bound on these figures.

COROLLARY 6.1. (Of Theorem 6.2.) If the diagonal PC matrices have different

detectabilities and locatabilities, then the detectability and locatability of the hierarchical

system are bounded by

T_ -> (train + 1)(h+l) a-l - 1;

L_ > 2a-l(la + 1)- 1;

where tin= is the minimum value of detectability and lm_ is the minimum value of locata-

bility among the copies of basic units.

116

6.4. Conclusions

We developed the concept of independent and orthogonal checks depending upon

the set of processors checked by the given sets of checks. Using orthogonal checks,

hierarchical techniques for the design and analysis of large fault-tolerant multiprocessor

systems were developed. We introduced the method to model different levels of checks,

which greatly simplifies the analysis and design of systems. The relationships between

the fault-diagnosing capabilities of basic systems and their hierarchical expansions were

derived.

117

CHAPTER 7.

CONCLUSIONS

7.1. Summary of Results

In many critical applications of VLSI-based computer systems, it is important to

have high performance as well as high reliability. High reliability has been achieved by

the application of fault tolerance techniques. Since the fault tolerance techniques are

dependent on the redundancy involved in the computations, such systems are either

costly due to the hardware redundancy involved or they are unable to reach high perfor-

mance levels due to the time redundancy. Therefore, the problem in hand is to investi-

gate techniques by which a high degree of fault tolerance can be achieved without

sacrificing too much performance. Algorithm-based fault tolerance (ABFT) has been

proposed as a cost effective scheme to achieve fault tolerance in multiprocessor systems.

These schemes use functional as well as system-level concurrent error detection for the

fault diagnosis in a system.

This thesis has addressed the problem of modeling fault-tolerant systems using con-

current error detection schemes in general and those using ABFT schemes in particular.

The major results in the thesis are recapitulated in the following.

In Chapter 2, we have given a general description of multiprocessor systems which

have been selected for the application of ABFT systems. In order to exemplify the

118

technique,we illustrated how fault-tolerantmatrix multiplication canbeperformedon a

mesh-connectedprocessorarrayusingchecksumencodingtechniques. Since most of the

signal processing computations can be represented as matrix operations, it is desirable to

have generalized encoding schemes for fault-tolerant matrix operations. In this chapter,

we developed a general set of real-number codes for these computations. We proved that

for every linear finite-field code, there exists a real-number code having similar error

diagnosing capabilities as the finite-field code. Since most of the codes known until now

fall in the set of finite-field codes, ofir new result has a far-reaching effect in the area of

coding theory as it forms a bridge between finite-field codes and real-number codes.

A matrix-based model for ABFT systems is presented in Chapter 3. The model

consists of three matrices: the PD (processor-data), the DC (data-check), and the PC

(Frtx:essor-check) matrix. The model used a broad interpretation of faults, errors, and

checks. The problem of invalidation of a check, performed by a faulty processor, is

efficiently handled by translating it into the problem of error detection at the output of the

faulty processor. Based on the model, various necessary and sufficient conditions for the

fault detectability and locatability of systems are derived. Using these constraints and

sufficient conditions, algorithms were developed for the analysis of ABFT systems.

These algorithms are much less complex than the previously available algorithms. A

detailed discussion of the algorithms is given in Chapter 4.

Chapter 5 dealt with design of ABFT systems. We developed a systematic and

straightforward methodology for the design of ABFT systems. The design requires a

smaller number of checks when compared to the previous bounds, especially when the

individual processors in the system are computing large volumes of data. Other

119

advantages include the flexibility of the algorithm to accommodate varying amounts of

computation performed by the computing nodes and the ability to handle detectability

and locatability of the system simultaneously. The application of the matrix model

helped in identifying the redundant checks using simple matrix operations.

In Chapter 6, we introduced a hierarchical approach for the analysis of fault-tolerant

multiprocessor systems. Even though inclusion of checks at different levels of hierarchy

has been practised in the past, the analysis of such systems was carried out on the basis of

a nonhierarchical ("flat") description of the system. We proposed a hierarchical approach

for the analysis of these systems. We treat the checks at different levels of hierarchy.

The fault tolerance of the system at different levels is estimated separately and the

overall fault tolerance is derived from those values. In order to illustrate the concept, we

introduced a special type of hierarchy for the design of multiprocessor systems. This par-

ticular type was chosen since it is easily applicable to most of the commercially available

muldprocessors. In addition, we observed that this particular type of hierarchy maxim-

ires the fault detectability and locatability of the overall system for a given error-

detecting capability of the individual checks.

7.2. Suggestions for Future Research

Even though ABFT techniques have been applied to most of the signal processing

computations, the applicability of the technique in other computations and data maJlipu-

lations has to be further investigated. As mentioned in Chapter 2, the ABFT techniques

are application specific. However, it may be possible to identify groups of computations

which can use similar encoding schemes to make the computation fault-tolerant. For

120

instance, we have shown that there exists a general set of real-number codes applicable to

various matrix operations such as multiplication, addition, transposition, and LU-

decomposition. Similar generalization of codes for various other computations is desir-

able.

In the graph model as well as in the manix model, it is assumed that all the data

values checked by a check processor are available simultaneously at the input of the

check, processor. In fact, this is a general assumption made by researchers in coding

theory. However, in system level diagnosis the availability of a particular data element

at the input of a checking processor is dependent on: (1) the computing speed of the par-

titular node which computes that data element; (2) the speed and band width of the com-

munication channel between the computing node and the evaluation node; (3) the data

traffic in the system. Therefore, it is desirable to include some timing features into the

check evaluation process. In [56] the researchers use Petri Nets to study the timing

behavior of fault-tolerant systems. The limitation of this approach was that even for sys-

tems having a small number of processors, it takes a large amount of time to verify the

fault tolerance capabilities of the system. It will be interesting to study the possible

extension of the matrix-based model to include time-dependent checks. We believe that

with such a formulation, a faster evaluation of fault-tolerant systems will be possible.

Another suggestion is to extend the field of application of the matrix-based model.

The advantage of the proposed model is that it is independent of the particular computa-

tional algorithm associated with the ABFT system. In order to model a system we need

to know only the relationship between the various entities in the system. It is not difficult

to model a fault-tolerant software system using this model. The difference between

121

hardwareandsoftware modeling is that instead of each processor module in the hardware

case, we will have a program module in the software system. In fact, the use of the

model in the analysis and design of fault-tolerant software systems will be even more

effective since the interaction between various nodes in the system is not limited by the

physical interconnection between them.

The hierarchical approach developed in Chapter 6 deals with only one type of

hierarchy. Even though this covers many of the commercially available fault-tolerant

array processors, a generalization of the concept of hierarchy is desirable. In the pro-

posed hierarchy, the checks at different levels are assumed to be orthogonal to each other.

A general case may be derived by assuming less stringent relationships between the

checks.

As mentioned in Chapter 5, there have been two approaches followed by ABFT sys-

tem designers: (1) given a non-fault-tolerant system, determine an efficient distribution

of checks among the output data elements so that the system has the desired amount of

fault tolerance; (2) given a fault-tolerant algorithm, synthesize an architecture so as to

maximize quantities such as the fault detectability and locatability of the system. In the

first approach, the fault-tolerant design is constrained by the fixed, non-fault-tolerant

architecture. Often, this may result in an inefficient design (as far as fault tolerance is

concerned); however, it preserves the high performance of the original architecture. In

the second approach, performance may be sacrificed in the process of achieving high

fault tolerance. Therefore, a more efficient approach would be to synthesize fault-

tolerant architectures directly from the original algorithms so that the architecture is

optimal with respect to performance, diagnosability, and reconfigurability.

122

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D. A. Rennels, "Fault-tolerant computing - concepts and examples," IEEE

Trans. Comput., vol. C-33, pp. 1116-1129, Dec. 1984.

Ravishankar K. Iyer, Steven E. Burner, and Edward J. McCluskey, "A statistical

failure/load relationship: Results of a multicomputer study," IEEE Trans.

Comput., vol. C-31, pp. 697-705, July 1982.

T. Anderson and P. A. Lee, Fault Tolerance - Principles and Practice . Nev_

Jersey: Prentice Hall Inc., 1981.

J. Von Neumann, "Probabilistic logics and the synthesis of reliable organisms

from unreliable components," in Automata Studies. Princeton, NJ: Princeton

University Press, pp. 43-99.

T. B. Lewis, "Primary processor and data storage equipment for orbiting

astronomical observatory," IEEE Trans. Elect. Comput., vol. EC-12, pp. 677-

686, Dec. 1963.

J. G. Tryon, "Quadded logic," in Redundancy Techniques for Computing

Systems. Washington, DC: Spartan Books, 1962.

I. Koren, "A reconfigurable and fault-tolerant VLSI multiprocessor array," in

Proc. 8th Int. Syrup. on Computer Architecture, Minneapolis, Minnesota, pp.

425-442, May 1981.

S. Y. Kuo and W. IC Fuchs, "Efficient spare allocation for reconfigurable

arrays," IEEE Design and Test, pp. 24-31, Feb. 1987.

M. Lowrie and W. K. Fuchs, "Reconfigurable tree architectures using sub-tree

oriented fault tolerance," IEEE Trans. Comput., vol. C-36, pp. 1172-1182, Oct.
1987.

M. Sami and R. Stefanalli, "Reconfigurable architectures for VLSI processing

arrays," Proc. IEEE, vol. 74, pp. 712-722, May 1986.

P. Velardi and R. K. Iyer, "A study of software failures and recovery in the MVS

operating system," IEEE Trans. Comput., vol. C-33, June 1984.

J. Wakerly, Error-Detecting Codes, Self-Checking Circuits and Applications.
New York: Elsevier North Holland Inc., 1978.

M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital

Systems. Maryland: Comput. Sci. Press, 1976.

K. H. Huang and J. A. Abraham, "Algorithm-based fault tolerance for matrix

operations," IEEE Trans. Comput., vol. C-33, pp. 518-528, June 1984.

123

[151

[161

[171

[181

[191

[201

[211

[221

[231

[241

[25]

[26]

[27]

[28]

[291

P. Banerjee, J. T. Rahmeh, C. B. Stunkel, V. S. S. Nalr, K. Roy, and J. A.

Abraham, "Algorithm-based fault tolerance on a hypercube multiprocessor,"

IEEE Trans. Comput., (to appear).

J. Y. Jou and J. A. Abraham, "Fault-tolerant matrix arithmetic and signal

processing on higb.ly concurrent computing structures," Proc. IEEE, vol. 74,

no.5, pp. 732-741, May 1986.

F. P. Preparata, G. Metze, and R. T. Chien, "On the connection assignment

problem of diagnosable systems," IEEE Trans. Electron. Comput., vol. EC-16,

pp. 848-854, December 1967.

J. D. Russel and C. R. Kime, "System fault diagnosis: Closure and diagnosability

with repair," IEEE Trans. Comput., vol. C-24, pp. 1078-1088, 1973.

J. D. Russel and C. R. Kime, "System fault diagnosis: Masking, exposure, and

diagnosahility without repair," IEEE Trans. Comput., vol. C-24, pp. 1155-1161,

1975.

M. Adham and A. D. Friedman, "Digital system fault diagnosis," J. Design Aut.

and FaultToL Comput., vol. 1, no.2, pp. 115-132, Feb. 1977.

S. N. Maheswari and S. L. Hakimi, "On models for diagnosable systems and

probabilistic fault diagnosis," IEEE Trans. Comput., vol. C-25, pp. 228-236,

Mar. 1976.

H. Fujiwara and tL Kinoshita, "Some existence theorems for probabilistically

diagnosable systems," IEEE Trans. Comput., vol. C-27, no. 4, pp. 379-384, Apr.

1978.

P. Banerjee and J.A. Abraham, "Concurrent faultdiagnosisin multipleprocessor

systems," in Proc. 16th Int.Syrup.Fault-TolerantComput., Vienna, Austria, pp.

298-303, 1986.

R. Bisiani,A. Nowatzyk, and M. Ravishankar, "Coherent shared memory on a

shared memory machine," in Proc. Int. Conf. Parallel Processing, vol. I,

Chicago, Illinois,pp. 133-141, 1989.

K. L. Wu and W. K. Fuchs, "Recoverable distributedshared virtualmemory,"

IEEE Trans. Comput., vol.39, pp. 460-469, Apr. 1990.

J. -C. Laprie, "Dependable computing and fault tolerance: Concepts and

terminology," Proc. Int.Syrup.Fault-TolerantComput., pp. 2-I I,June 1985.

T. E. Mangir, "Sources of failures and yield improvement for VLSI and
restructurable interconnects for RVLSI and WSI: Part II," Proc. IEEE, vol. 72,

pp. 1687-1694, Dec. 1984.

J. A. Abraham and W. K. Fuchs, "Fault and error models for VLSI," Proc.

IEEE, vol. 74, no. 5, pp. 639-654, May 1986.

M. Pease, R. Shostak, and L. Lamport, "Reaching agreement in the presence of

faults," J. ACM, vol. 27, pp. 228-234, Apr. 1980.

124

[30]

[311

[321

[331

[341

[35]

[36]

[371

[381

[391

[401

[411

[421

[431

[441

[45]

[46]

K. A. Hua, "Design of systems with concurrent error detection using software

redundancy," Ph.D. dissertation, Univ. of minois, Urbana, Illinois, 1987.

P. Banerjee, "A Theory for algorithm-based fault tolerance in array processor

systems," Ph.D. dissertation, Univ. of Illinois, Urbana, Illinois, 1985.

V. S. S. Nair and J. A. Abraham, "Real number codes for fault-tolerant matrix

operations on processor arrays," IEEE Trans. Comput., pp. 426-435, Apr. 1990.

F. T. Luk and H. Park, "Fault-tolerant matrix triangulation on systolic arrays,"

IEEE Trans. Comput., vol. 37, pp. 1434-1438, 1988.

J. Y. Jou and J. A. Abraham, "Fault-tolerant FFT networks," IEEE Trans.

Comput., vol. 37, pp. 548-561, May 1988.

C. Y. Chen and J. A. Abraham, "Fault-tolerant systems for the computation of

eigenvalues and singular values," Proc. SPIE, Advanced Algorithms and

Architectures for Signal Processing, vol. 696, pp. 228-237, Aug. 1986.

A. L. N. Reddy and P. Banerjee, "Algorithm-based fault detection for signal

processing applications," IEEE Trans. Comput., 1990, (to appear).

C. Aykanat and F. Ozguner, "A conjugate gradient algorithm on a hypercube

multitnxx:essor," Proc. 17th Int. Syrup. Fault-Tolerant Comput., pp. 204-209,
1987.

V. S. S. Nair, "General linear codes for fault-tolerant matrix operations on

processor arrays," M. S. thesis, Univ. of Illinois, Urbana, Illinois, Aug. 1988.

V. S. S. Nair and J. A. Abraham, "General linear codes for fault-tolerant matrix

operations on processor arrays," in Proc. 18th Int. Syrup. Fault-Tolerant

Comput., Tokyo, Japan, pp. 180-185, June 1988.

R. E. Blahut, Theory and Practice of Error Control Codes. Massachusetts:

Addison Wesley, 1984.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge: MIT
Press, 1981.

B. Bose and T. R. N. Rao, "Theory of unidirectional error correcting/detecting

codes," IEEE Trans. Comput., vol. C-31, pp. 521-530, June 1982.

C. W. Curtis, Linear Algebra. New York: Springer-Verlag, 1984.

T. G. Marshall Jr., "Coding of real number sequences for error correction: A

digital signal processing problem," IEEE Journal on Selected Areas in

Communication, vol. SAC-2, no. 2, pp. 381-392, Mar. 1984.

A. Costes, C. Landrault, and J. C. Lapnie, "Availability model lbr maintained

systems featuring hardware failures and design faults," IEEE Trans. Comput.,

vol. C-27, pp. 548-560, June 1978.

V. S. S. Nair and J. A. Abraham, "A model for the analysis of fault-tolerant

signal processing architectures," in Proc. 32nd Int. Tech. Syrup. SPIE, San Diego,

pp. 246-257, Aug. 1988.

125

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

K. H. Huang and J. A. Abraham, "Low cost schemes for fault tolerance in matrix

operations with processor arrays," in Proc. 12th Int. Symp. Fault-Tolerant

Comput., Santa Monica, California, June 21-24, 1982.

J. R. Samson, Jr., and F. A. Horrigan, "The advanced onboard signal processor

(AOSP) - A valid concept," Proc. DARPA Strategic Space Symposium, pp. 1-24,

1983.

B. Vinnakota and N. IC Jha, "Diagnosability and diagnosis of algorithm-based

fault-tolerant systems," in Proc. 32nd Midwest Syrup. Circuits and Systems,

Urbana, Illinois, Aug. 1989.

P. Banerjee and J. A. Abraham, "Bounds on algorithm-based fault tolerance in

multiple processor systems," IEEE Trans. Comput., vol. C-35, pp. 296-306, Apr.
1986.

D. J. Rosenkrantz and S. S. Ravi, "Improved bounds on algorithm-based fault

tolerance," in Proc. 26th Annual Allerton Conf. on Communication, Control, and

Computing, Monticello, Illinois, pp. 388-397, Sept. 1988.

B. Vinnakota and N. K. Jha, "A dependence graph-based approach to the design

of algorithm-based fault tolerant systems," in Proc. 20 th Int. Symp. Fault-

Tolerant Comput., Newcastle, England, 26 - 28th June, (to appear).

S. Y. Kung, VLSIArray Processors. Englewoods Cliffs, NJ: Prentice Hall, 1988.

V. S. S. Nair and J. A. Abraham, "Hierarchical analysis and design of fault-

tolerant multiprocessor systems," IEEE Trans. Comput., (under preparation).

E. M. Reingold, J. Nievergelt, and N. Deo, in Combinatorial Algorithms: Theory

and Practice. Englewoods-Cliffs, N J: Prentice-Hall, 1977.

J. Kljaich, Jr., B. T. Smith, and A. S. Wojcik, "Formal verification of fault

tolerance using theorem-proving techniques," IEEE Trans. Comput., vol. 38, pp.

366-376, Mar. 1989.

126

VITA

V. S. Sukumaran Nair was born in Trivandrum, India, on August 15, 1963. He

received his B.Sc. Engg. degree in Electronics and Communication Engineering from the

University of Kerala, India, in 1984. From 1984 to 1985, he was employed with the

Indian Space Research Organization (ISRO) in Trivandrum. In 1986, he enrolled at the

University of Illinois at Urbana-Champaign for his graduate studies. He received the

M.S. degree in Electrical Engineering in 1988. While pursuing his M.S. and Ph.D. stu-

dies at the University of Illinois, he held a research assistantship in the Center for Reli-

able and High-Performance Computing at the Coordinated Science Laboratory from

1986 to 1990. His research interests include fault-tolerant computing, computer architec-

ture, parallel processing, and VLSI. He is a student member of IEEE.

